

J. T. Chen

Department of Harbor and River Engineering National Taiwan Ocean University May 6, 2003

Topics

Part 1:
 Equivalence of method of fundamental solutions and Trefftz method
 Part 2:
 Membrane eigenproblem
 Part 3:
 Plate eigenproblem

Part 1

- Description of the Laplace problem
 Trefftz method
- **Wethod of fundamental solutions (MFS)**
- Connection between the Trefftz method and the MFS for Laplace equation
- **Vumerical examples**
- **&** Concluding remarks
- Further research

- Description of the Laplace problem
 Trefftz method
- **Wethod of fundamental solutions (MFS)**
- Connection between the Trefftz method and the MFS for Laplace equation
- **Vumerical examples**
- **&** Concluding remarks
- **&** Further research

Description of the Laplace problem

Engineering applications:

- 1. Seepage problem
- 2. Heat conduction
- **3. Electrostatics**
- 4. Torsion bar

Two-dimensional Laplace problem with a circular domain

G.E. :

$$: \nabla^2 u(x) = 0, \quad x \in L$$

B.C.:
$$u(x) = \overline{u}, \quad x \in B$$

where

- ∇^2 denotes the Laplacian operator
- u(x) is the potential function
 - ρ is the radius of the field point
 - ϕ is the angle along the field point

Analytical solution

Field Solution:

$$u(\rho,\phi) = \bar{a}_0 + \sum_{n=1}^{N} \bar{a}_n (\frac{\rho}{a})^n \cos(n\phi) + \sum_{n=1}^{N} \bar{b}_n (\frac{\rho}{a})^n \sin(n\phi)$$

where $o < \rho < a$

Boundary Condition: Dirichlet type

$$u(a,\phi) = \overline{a}_0 + \sum_{n=1}^N \overline{a}_n \cos(n\phi) + \sum_{n=1}^N \overline{b}_n \sin(n\phi)$$

where a_0, a_n, b_n are the Fourier coefficients

- Description of the Laplace problem
 Trefftz method
- **Wethod of fundamental solutions (MFS)**
- Connection between the Trefftz method and the MFS for Laplace equation
- **Vumerical Examples**
- **& Concluding remarks**
- Further research

Trefftz method

Representation of the field solution :

$$u(x) = \sum_{j=1}^{2N_T + 1} w_j u_j(x)$$

where

- $2N_T + 1$ is the number of complete functions
 - w_j is the unknown coefficient
 - *u_j* is the T-complete function which satisfies the Laplace equation

By matching the boundary condition at $\rho = a$

$$u(a,\phi) = a_0 + \sum_{n=1}^{N_T} a_n \rho^n \cos(n\phi) + \sum_{n=1}^{N_T} b_n \rho^n \sin(n\phi).$$
$$u(a,\phi) = \overline{a}_0 + \sum_{n=1}^{N} \overline{a}_n \cos(n\phi) + \sum_{n=1}^{N} \overline{b}_n \sin(n\phi).$$

$$a_{0} = \overline{a}_{0},$$

$$a_{n} = \frac{\overline{a}_{n}}{\underline{a}^{n}}, \quad n = 1, 2, \dots N_{T}$$

$$b_{n} = \frac{\overline{b}_{n}}{\underline{a}^{n}}, \quad n = 1, 2, \dots N_{T}$$

- Description of the Laplace problem
 Trefftz method
- **Wethod of fundamental solutions (MFS)**
- Connection between the Trefftz method and the MFS for Laplace equation
- **Vumerical Examples**
- **&** Concluding remarks
- **&** Further research

Method of Fundamental Solutions $(R > \rho)$

Field solution :

$$u(x) = \sum_{j=1}^{N_M} c_j U(x, s_j), \quad s_j \in D^e$$

where

- $N_{\scriptscriptstyle M}\,$ is the number of source points in the MFS
- C_j is the unknown coefficient
- $U(x, s_i)$ is the fundamental solution
 - D^e is the complementary domain
 - *s* is the source point
 - *x* is the collocation point

$$G(x,s) = \begin{cases} \frac{y_1(x)y_2(s)}{W(y_1,y_2)}, & 0 \le x \le s\\ \frac{y_1(s)y_2(x)}{W(y_1,y_2)}, & s \le x \le l \end{cases}$$

W means Wronskin determinant

K

ジージン

K

ドゲージ

Degenerate kernel : 🕥

$$U(R,\theta,\rho,\phi) = \begin{cases} U^{i}(R,\theta,\rho,\phi) = \ln(R) - \sum_{m=1}^{\infty} \frac{1}{m} (\frac{\rho}{R})^{m} \cos(m(\theta-\phi)), & R > \rho \\ U^{e}(R,\theta,\rho,\phi) = \ln(\rho) - \sum_{m=1}^{\infty} \frac{1}{m} (\frac{R}{\rho})^{m} \cos(m(\theta-\phi)), & R < \rho \end{cases}$$

Symmetry property for kernel :

$$U(x, s_j) = U(s_j, x) \implies u(x) = \sum_{j=1}^{N_M} c_j U(s_j, x), \ s_j \in D^e.$$

Derivation of degenerate kernel

Use the Complex Variable method to derive the degenerate kernel:

Motivation: $z = \ln r + i\theta$ $x = (\rho, \phi) \rightarrow \overline{z}, \quad s = (R, \theta) \rightarrow z$ $\overline{z} = \ln \rho + i\phi \quad (x)$ $z = \ln R + i\theta \quad (s)$

Derivation of degenerate kernel

$$u(\rho,\phi) = \sum_{j=1}^{N_M} c_j [\ln(R) - \sum_{m=1}^{\infty} \frac{1}{m} (\frac{\rho}{R})^m \cos(m(\theta_j - \phi))]$$

By matching the boundary condition $\rho = R = a$

$$u(a,\phi) = \overline{a}_0 + \sum_{n=1}^N \overline{a}_n \cos(n\phi) + \sum_{n=1}^N \overline{b}_n \sin(n\phi)$$

$$\overline{a}_{0} = \sum_{j=1}^{N_{M}} c_{j} \ln(R)$$

$$\overline{\frac{a_{n}}{a^{n}}} = -\sum_{j=1}^{N_{M}} c_{j} \frac{1}{n} (\frac{1}{R})^{n} \cos(n\theta_{j}), \quad n = 1, 2, ..., N_{M}$$

$$\overline{\frac{b_{n}}{a^{n}}} = -\sum_{j=1}^{N_{M}} c_{j} \frac{1}{n} (\frac{1}{R})^{n} \sin(n\theta_{j}), \quad n = 1, 2, ..., N_{M}$$

- Description of the Laplace problem
 Trefftz method
- **Wethod of fundamental solutions (MFS)**
- Connection between the Trefftz method and the MFS for Laplace equation
- **Vumerical Examples**
- **Variable Weights Variable Weights Variable Weights**
- **&** Further research

On the equivalence of Trefftz method and MFS for Laplace equation

We can find that the T-complete functions of Trefftz method are imbedded in the degenerate kernels of MFS :
Image: Complete functions

MFS:
$$U(x,s) = \begin{cases} U^{i}(x,s) = \ln R - \sum_{m=1}^{\infty} \frac{1}{m} (\frac{\rho}{R})^{m} \cos(m(\theta - \phi)), \ \rho < R \\ U^{e}(x,s) = \ln \rho - \sum_{m=1}^{\infty} \frac{1}{m} (\frac{R}{\rho})^{m} \cos(m(\theta - \phi)), \ \rho > R \end{cases}$$

Trefftz:

 $\rho^m \cos(m\theta), \quad \rho^m \sin(m\theta)$

By setting $N_T = N_M = 2N + 1$

$$a_{0} = \sum_{j=1}^{2N+1} c_{j} \ln(R)$$

$$a_{n} = -\sum_{j=1}^{2N+1} c_{j} \frac{1}{n} (\frac{1}{R})^{n} \cos(n\theta_{j}), \quad n = 1, 2, \dots 2N+1$$

$$b_{n} = -\sum_{j=1}^{2N+1} c_{j} \frac{1}{n} (\frac{1}{R})^{n} \sin(n\theta_{j}), \quad n = 1, 2, \dots 2N+1$$

Trefftz MFS

$$[K] = [T_R][T_{\theta}]$$

$$T_{\theta}] = \begin{bmatrix} 1 & 1 & \cdots & \cdots & \cdots & 1 \\ \cos(\theta_{1}) & \cos(\theta_{2}) & \cdots & \cdots & \cdots & \cos(\theta_{2N+1}) \\ \sin(\theta_{1}) & \sin(\theta_{2}) & \cdots & \cdots & \cdots & \sin(\theta_{2N+1}) \\ \cos(\theta_{1}) & \cos(\theta_{2}) & \cdots & \cdots & \cdots & \cos(\theta_{2N+1}) \\ \sin(2\theta_{1}) & \sin(2\theta_{2}) & \cdots & \cdots & \cdots & \sin(2\theta_{2N+1}) \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \cos(N\theta_{1}) & \cos(N\theta_{2}) & \cdots & \cdots & \cdots & \sin(N\theta_{2N+1}) \\ \sin(N\theta_{1}) & \sin(N\theta_{2}) & \cdots & \cdots & \cdots & \sin(N\theta_{2N+1}) \end{bmatrix}_{(2N+1)\times(2N+1)}$$

Papers of degenerate scale (Taiwan)

- 1. J. T. Chen, S. R. Kuo and J. H. Lin, 2002, Analytical study and numerical experiments for degenerate scale problems in the boundary element method for two-dimensional elasticity, *Int. J. Numer. Meth. Engng.*, Vol.54, No.12, pp.1669-1681. (SCI and EI)
- 2. J. T. Chen, C. F. Lee, I. L. Chen and J. H. Lin, 2002 An alternative method for degenerate scale problem in boundary element methods for the twodimensional Laplace equation, *Engineering Analysis with Boundary Elements*, Vol.26, No.7, pp.559-569. (SCI and EI)
- 3. J. T. Chen, J. H. Lin, S. R. Kuo and Y. P. Chiu, 2001, Analytical study and numerical experiments for degenerate scale problems in boundary element method using degenerate kernels and circulants, *Engineering Analysis with Boundary Elements*, Vol.25, No.9, pp.819-828. (SCI and EI)
- 4. J. T. Chen, S. R. Lin and K. H. Chen, 2003, Degenerate scale for Laplace equation using the dual BEM, *Int. J. Numer. Meth. Engng, Revised.*

Papers of degenerate scale (China)

- 1. 胡海昌, 平面調和函數的充要的邊界積分方程, 1992, 中國 科學學報, Vol.4, pp.398-404
- 2. 胡海昌, 調和函數邊界積分方程的充要條件, 1989, 固體力 學學報, Vol.2, No.2, pp.99-104
- 3. W. J. He, H. J. Ding and H. C. Hu, Nonuniqueness of the conventional boundary integral formulation and its elimination for two-dimensional mixed potential problems, Computers and Structures, Vol.60, No.6, pp.1029-1035, 1996.

 $G.E.: \Delta u(x) = 0$ $B.C.: u(x) = \cos(3\theta)$

Exact solution: $u(r,\theta) = r^3 \cos(3\theta)$ $u(r,\theta) = c \ln r + \frac{1}{r^3} \cos(3\theta)$

- 1. Trefftz method for simply-connected problem
- 2. MFS for simply-connected problem

Exact solution:

 $u(\rho,\phi) = \frac{\ln\rho}{\ln 2.5} \qquad u(\rho,\phi) = \frac{1}{2\ln 2} \{\frac{16\rho^2 + 1 + 8\rho\cos\phi}{\rho^2 + 16 + 8\rho\cos\phi}\}$

- 1. Trefftz method for multiply-connected problem
- 2. MFS for multiply-connected problem 30

Trefftz method for simply-connected problem

MFS for simply-connected problem

Trefftz method for multiply-connected problem

, A	MFS for multiply-connected problem				
5	Concentric circle		Eccentric circle		
1	Exact solution	Numerical solution	Exact solution	Numerical solution	
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	内圈佈20點;外圈60 點 $u(\rho,\phi) = \frac{\ln \rho}{\ln 2.5}$	內圈r=0.9; 外圈 r=2.6 內圈佈20點; 外圈 60點	内圈佈20點;外圈60點 $u(\rho,\phi) = \frac{1}{2\ln 2} \times \left\{ \frac{16\rho^2 + 1 + 8\rho\cos\alpha}{\rho^2 + 16 + 8\rho\cos\alpha} \right\}$	内園佈20點;外園60點;內園r1=0.9 外園r2=2.6 外園r2=3.0 小園r2=4.0 外園r2=10.0 小園r2=10.0 小園r2=10.0 小園r2=10.0 小園r2=10.0 小園r2=2.6 内園佈20點;外圈60點;外圈r2=2.6 内園r1=0.5 内園r1=0.3	

- Description of the Laplace problem
 Trefftz method
- **Wethod of fundamental solutions (MFS)**
- Connection between the Trefftz method and the MFS for Laplace equation
- Value Numerical Examples
- **& Concluding remarks**
- Further research

Concluding Remarks

- 1. The proof of the mathematical equivalence between the Trefftz method and MFS for Laplace equation was derived successfully.
- The T-complete set functions in the Trefftz method for interior and exterior problems are imbedded in the degenerate kernels of the fundamental solutions as shown in Table 1 for 1-D, 2-D and 3-D Laplace problems.
- 3. The sources of degenerate scale and ill-posed behavior in the MFS are easily found in the present formulation.
- 4. It is found that MFS can approach the exact solution more efficiently than the Trefftz method under the same number of degrees of freedom.

Comparison between the Trefftz method and MFS

	Trefftz method	MFS
Objectivity (Frame of indifference)	Bad	Good
Degenerate scale	Dis appear	Appear
Ill-posed behavior	Appear	Appear

- Description of the Laplace problem
 Trefftz method
- **Wethod of fundamental solutions (MFS)**
- Connection between the Trefftz method and the MFS for Laplace equation
- **Vumerical Examples**
- **&** Concluding remarks
- Further research

The End Thanks for your kind attention

Fundamental solution

$$\nabla_x^2 U(x,s) = \delta(x-s)$$

$$\bigcup$$

$$U(x,s) = \ln(r)$$

$$r = |\underline{x} - \underline{s}|$$

$$\nabla_{x}^{2} = \frac{\partial^{2}}{\partial \rho^{2}} + \frac{1}{\rho} \frac{\partial}{\partial \rho} + \frac{1}{\rho^{2}} \frac{\partial^{2}}{\partial \phi^{2}}$$

Step 1

$$U(s, x) = \ln(r) = \ln\left|\underline{s} - \underline{x}\right|$$

x: variables: fixed

Degenerate kernel (Step 2, Step 3)

Ú

$$U^{i}(R,\theta,\rho,\phi) = \ln(\rho) - \sum_{m=1}^{\infty} \frac{1}{m} \left(\frac{R}{\rho}\right)^{m} \cos(m(\theta-\phi)), \quad R > \rho$$
$$U^{e}(R,\theta,\rho,\phi) = \ln(R) - \sum_{m=1}^{\infty} \frac{1}{m} \left(\frac{\rho}{R}\right)^{m} \cos(m(\theta-\phi)), \quad R < \rho$$

$$44$$