

Part III

Plate vibration

- S V Vibration of plates

Governing Equation:

$$\nabla^4 u(x) = \lambda^4 u(x), \, x \in \Omega$$

$$\lambda^{4} = \frac{\omega^{2} \rho h}{D}$$
$$D = \frac{E h^{3}}{12 (1 - v^{2})}$$

is the angle frequency provide Bufface density ePal displacemental rigidity duerisythe relates thickness Enjs the Young's modulus is the Poisson ration

Displacement field of plate vibration

$$u(s,x) = \sum_{j=1}^{2N} P(s_j, x)\phi_j + \sum_{j=1}^{2N} Q(s_j, x)\psi_j$$

- 2N is the number of boundary nodes
- s is the source point
- x is the collocation point
- \aleph_j and \square_j are the unknown densities
- *P* and *Q* can be obtained from either two combinations of U, $\not\rightarrow$, *M* and *V*

Imaginary-part fundamental solution

$$U(s,x) = \operatorname{Im}\{\frac{i}{8\lambda^2}(H_0^{(2)}(\lambda r) + H_0^{(1)}(i\lambda r))\}$$

$$U(s,x) = \frac{1}{8\lambda^2} (J_0(\lambda r) + I_0(\lambda r))$$

$\Theta(s, x) = K_{\theta}(U(s, x))$ $M(s, x) = K_{m}(U(s, x))$ $V(s, x) = K_{v}(U(s, x))$

$$K_{\theta}(\cdot) = \frac{\partial(\cdot)}{\partial n}$$

$$K_m(\cdot) = \nu \nabla^2(\cdot) + (1 - \nu) \frac{\partial^2(\cdot)}{\partial n^2}$$

$$K_{\nu}(\cdot) = \frac{\partial \nabla^{2}(\cdot)}{\partial n} + (1 - \nu) \frac{\partial}{\partial t} \left(\frac{\partial^{2}(\cdot)}{\partial n \partial t}\right)$$

Slope $\theta(x) = K_{\theta}(u(x))$ Moment $m(x) = K_{m}(u(x))$ Shear $v(x) = K_{v}(u(x))$

M True eigenequation of three cases

	B.C.	True eigenequation	
Clamped	u(x)=0	I'(2a)I(2a) = I'(2a)I(2a) = 0	
plate	$\Box(x)=0$	$\int_{\ell} (\lambda p) I_{\ell} (\lambda p) - I_{\ell} (\lambda p) J_{\ell} (\lambda p) = 0$	
Simply-	u(x)=0	$I_{1}(\lambda \rho) = J_{1}(\lambda \rho) = 2\lambda \rho$	
supported	m(x)=0	$\frac{I_{\ell+1}(\lambda\rho)}{I_{\ell}(\lambda\rho)} + \frac{J_{\ell+1}(\lambda\rho)}{J_{\ell}(\lambda\rho)} = \frac{2\lambda\rho}{(1-\nu)}$	
plate			
Free	m(x)=0	$\left (\ell^{2}(\ell^{2}-1)(-1+\nu)^{2} + \lambda^{4} a^{4})(J_{\ell+1}(\lambda a)I_{\ell}(\lambda a) + J_{\ell}(\lambda a)I_{\ell+1}(\lambda a)) + 2\ell \lambda^{2} a^{2}(1-\ell)(-1+\nu)(I_{\ell}(\lambda a)I_{\ell}(\lambda a) - I_{\ell}(\lambda a)I_{\ell}(\lambda a)) \right $	
plate	v(x)=0	$+\lambda a(-1+\nu)(2\lambda^{2}a^{2}J_{\ell+1}(\lambda a)I_{\ell+1}(\lambda a)+4\ell^{2}(-1+\ell)J_{\ell}(\lambda a)I_{\ell}(\lambda a)=0$	

IFlow chart of the present method forMclamped case by using U and → kernels

Case 2: Circular simply-supported plate using the present method

M

Case 3: Circular free plate using the present method

$$[K] = \begin{bmatrix} a_0 & a_1 & a_2 & \cdots & a_{2N-2} & a_{2N-1} \\ a_{2N-1} & a_0 & a_1 & \cdots & a_{2N-3} & a_{2N-2} \\ a_{2N-2} & a_{2N-1} & a_0 & \cdots & a_{2N-4} & a_{2N-3} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ a_2 & a_3 & a_4 & \cdots & a_0 & a_1 \\ a_1 & a_2 & a_3 & \cdots & a_{2N-1} & a_0 \end{bmatrix}$$
$$a_{j-i} = K(s_j, x_i)$$
$$[K] = a_0 I + a_1 (C_{2N})^1 + a_2 (C_{2N})^2 + \cdots + a_{2N-1} (C_{2N})^{2N-1}$$

海洋大学刀学 ⊈ 響振動 貫 殿 至 SVLAB HRE NTOU S

$$\lambda_{\ell}^{[U]} = a_0 + a_1 \alpha_{\ell} + a_2 \alpha_{\ell}^2 + \dots + a_{2N-1} \alpha_{\ell}^{2N-1}$$

$$\ell = 0, \pm 1, \pm 2, \dots, \pm (N-1), N$$

$$\lambda_{\ell}^{[U]} = \frac{N}{4\lambda^2} [J_{\ell}(\lambda\rho)J_{\ell}(\lambda\rho) + (-1)^{\ell}I_{\ell}(\lambda\rho)I_{\ell}(\lambda\rho)]$$

$$\begin{bmatrix} SM^{C} \end{bmatrix} = \begin{bmatrix} \Phi \Sigma_{U} \Phi^{T} & \Phi \Sigma_{\Theta} \Phi^{T} \\ \Phi \Sigma_{U_{\theta}} \Phi^{T} & \Phi \Sigma_{\Theta_{\theta}} \Phi^{T} \end{bmatrix}_{2N \times 2N}$$
$$= \begin{bmatrix} \Phi & 0 \\ 0 & \Phi \end{bmatrix} \begin{bmatrix} \Sigma_{U} & \Sigma_{\Theta} \\ \Sigma_{U_{\theta}} & \Sigma_{\Theta_{\theta}} \end{bmatrix} \begin{bmatrix} \Phi & 0 \\ 0 & \Phi \end{bmatrix}^{T}$$

Eigenequation for clamped boundary

$$det[SM^{e}] = \prod_{\ell=-(N+1)}^{N} (\lambda_{\ell}^{[U]} \mu_{\ell}^{[\Theta]} - \lambda_{\ell}^{[\Theta]} \mu_{\ell}^{[U]})$$

$$= \prod_{\ell=-(N+1)}^{N} \frac{(-1)^{\ell} N^{2}}{16\lambda^{2}} [J_{\ell+1}(\lambda\rho) I_{\ell}(\lambda\rho) + I_{\ell+1}(\lambda\rho) J_{\ell}(\lambda\rho)]$$

$$\{J_{\ell+1}(\lambda\rho) I_{\ell}(\lambda\rho) + I_{\ell+1}(\lambda\rho) J_{\ell}(\lambda\rho)\} = 0,$$

$$\ell = 0, \pm 1, \pm 2, \cdots, \pm (N-1), N$$

~ - *C* -

$$\begin{bmatrix} SM^{S} \end{bmatrix} = \begin{bmatrix} \Phi \Sigma_{U} \Phi^{T} & \Phi \Sigma_{\Theta} \Phi^{T} \\ \Phi \Sigma_{U_{m}} \Phi^{T} & \Phi \Sigma_{\Theta_{m}} \Phi^{T} \end{bmatrix}$$
$$= \begin{bmatrix} \Phi & 0 \\ 0 & \Phi \end{bmatrix} \begin{bmatrix} \Sigma_{U} & \Sigma_{\Theta} \\ \Sigma_{U_{m}} & \Sigma_{\Theta_{m}} \end{bmatrix} \begin{bmatrix} \Phi & 0 \\ 0 & \Phi \end{bmatrix}^{T}$$

$$\begin{bmatrix} U \end{bmatrix} \xrightarrow{SVD} \Sigma_U \to \lambda_{\ell}^{[U]} \\ \begin{bmatrix} \Theta \end{bmatrix} \xrightarrow{SVD} \Sigma_\Theta \to \lambda_{\ell}^{[\Theta]} \\ \begin{bmatrix} U_m \end{bmatrix} \xrightarrow{SVD} \Sigma_{\Theta} \to \mathcal{V}_{\ell}^{[U]} \\ \begin{bmatrix} \Theta_m \end{bmatrix} \xrightarrow{SVD} \Sigma_{U_m} \to \mathcal{V}_{\ell}^{[\Theta]} \end{bmatrix}$$

$$Eigenequation for simply-supported boundary
det[SMS]
= $\prod_{\ell=-(N+1)}^{N} (\lambda_{\ell}^{[U]} v_{\ell}^{[\Theta]} - \lambda_{\ell}^{[\Theta]} v_{\ell}^{[U]})$
= $\prod_{\ell=-(N+1)}^{N} \frac{(-1)^{\ell} N^{2}}{16\lambda^{2}\rho} [J_{\ell}(\lambda\rho)I_{\ell+1}(\lambda\rho) + I_{\ell}(\lambda\rho)J_{\ell+1}(\lambda\rho)]$
 $\{(-1+\nu)(J_{\ell+1}(\lambda\rho)I_{\ell}(\lambda\rho) + J_{\ell}(\lambda\rho)I_{\ell+1}(\lambda\rho)) + 2\lambda\rho J_{\ell}(\lambda\rho)I_{\ell}(\lambda\rho)] = 0$
 $\ell = 0, \pm 1, \pm 2, \dots, \pm (N-1), N$$$

Determinant (for simply-supported)

$$\begin{bmatrix} SM^{F} \end{bmatrix} = \begin{bmatrix} \Phi \Sigma_{U_{m}} \Phi^{T} & \Phi \Sigma_{\Theta_{m}} \Phi^{T} \\ \Phi \Sigma_{U_{\nu}} \Phi^{T} & \Phi \Sigma_{\Theta_{\nu}} \Phi^{T} \end{bmatrix}$$
$$= \begin{bmatrix} \Phi & 0 \\ 0 & \Phi \end{bmatrix} \begin{bmatrix} \Sigma_{U_{m}} & \Sigma_{U_{m}} \\ \Sigma_{U_{\nu}} & \Sigma_{\Theta_{\nu}} \end{bmatrix} \begin{bmatrix} \Phi & 0 \\ 0 & \Phi \end{bmatrix}^{T}$$

$$\begin{aligned} \mathbf{Eigenequation for free boundary} \\ \mathbf{J} \\ \mathbf{J$$

Comparisons of the NDIF and present method

	Kang	Present method
Base	$U(s, x) = J_0(\lambda r)$ $\Theta(s, x) = I_0(\lambda r)$	$U(s,x) = \frac{1}{8\lambda^2} (J_0(\lambda r) + I_0(\lambda r))$ $\Theta(s,x) = \frac{\partial U(s,x)}{\partial n_s}$
Clamped plate	$J_{\ell}(\lambda r)I_{\ell+1}(\lambda r) + J_{\ell+1}(\lambda r)I_{\ell}(\lambda r) = 0$	$J_{\ell}(\lambda r)I_{\ell+1}(\lambda r) + J_{\ell+1}(\lambda r)I_{\ell}(\lambda r) = 0$
	$J_{\ell}(\lambda r) = 0$	$J_{\ell}(\lambda r)I_{\ell+1}(\lambda r) + J_{\ell+1}(\lambda r)I_{\ell}(\lambda r) = 0$
Simply- supported plate	$\frac{I_{\ell+1}(\lambda r)}{I_{\ell}(\lambda r)} + \frac{J_{\ell+1}(\lambda r)}{J_{\ell}(\lambda r)} = \frac{2\lambda r}{(1-\nu)}$	$\frac{I_{\ell+1}(\lambda r)}{I_{\ell}(\lambda r)} + \frac{J_{\ell+1}(\lambda r)}{J_{\ell}(\lambda r)} = \frac{2\lambda r}{(1-\nu)}$
	$J_{\ell}(\lambda r) = 0$	$J_{\ell}(\lambda r)I_{\ell+1}(\lambda r) + J_{\ell+1}(\lambda r)I_{\ell}(\lambda r) = 0$
Treatment	Net approach	Dual formulation with SVD updating

Circular clamped plate using different methods

Comparisons of Leissa and present method

	Leissa (Kitahara)	Present method
Clamped plate	$J_{\ell}(\lambda r)I_{\ell+1}(\lambda r) + J_{\ell+1}(\lambda r)I_{\ell}(\lambda r) = 0$	$\int_{\ell} (\lambda r) I_{\ell+1}(\lambda r) + J_{\ell+1}(\lambda r) I_{\ell}(\lambda r) = 0$
Simply- supported plate	$\frac{I_{\ell+1}(\lambda r)}{I_{\ell}(\lambda r)} + \frac{J_{\ell+1}(\lambda r)}{J_{\ell}(\lambda r)} = \frac{2\lambda r}{(1-\nu)}$	$\frac{I_{\ell+1}(\lambda r)}{I_{\ell}(\lambda r)} + \frac{J_{\ell+1}(\lambda r)}{J_{\ell}(\lambda r)} = \frac{2\lambda r}{(1-\nu)}$
Free plate	$\frac{\lambda^{2}J_{\ell}(\lambda\rho) + (1-\nu)[\lambda J_{\ell}'(\lambda\rho) - \ell^{2}J_{\ell}(\lambda\rho)]}{\lambda^{2}I_{\ell}(\lambda\rho) - (1-\nu)[\lambda I_{\ell}'(\lambda\rho) - \ell^{2}I_{\ell}(\lambda\rho)]}$ = $\frac{\lambda^{2}I_{\ell}(\lambda\rho) + (1-\nu)\ell^{2}[\lambda J_{\ell}'(\lambda\rho) - J_{\ell}(\lambda\rho)]}{\lambda^{3}I_{\ell}'(\lambda\rho) - (1-\nu)\ell^{2}[\lambda I_{\ell}'(\lambda\rho) - I_{\ell}(\lambda\rho)]}$	$ \{\ell^{2}(\ell^{2}-1)(-1+\nu)^{2}+\lambda^{4}\rho^{4})(J_{\ell+1}(\lambda\rho)I_{\ell}(\lambda\rho) + J_{\ell}(\lambda\rho)I_{\ell+1}(\lambda\rho)) + 2\ell\lambda^{2}\rho^{2}(1-\ell)(-1+\nu) \\ (J_{\ell+1}(\lambda\rho)I_{\ell}(\lambda\rho) - J_{\ell}(\lambda\rho)I_{\ell+1}(\lambda\rho)) + \lambda\rho(-1+\nu) \\ (2\lambda^{2}\rho^{2}J_{\ell+1}(\lambda\rho)I_{\ell+1}(\lambda\rho) + 4\ell^{2}(-1+\ell)J_{\ell}(\lambda\rho)I_{\ell}(\lambda\rho) \\ = 0 $

 $\begin{bmatrix} SM^{C} \end{bmatrix} \begin{cases} \phi \\ \psi \end{cases} = \begin{bmatrix} U & \Theta \\ U_{\rho} & \Theta_{\rho} \end{bmatrix} \begin{cases} \phi \\ \psi \end{cases} = \begin{cases} 0 \\ 0 \end{cases}$ $\begin{bmatrix} SM_1^C \end{bmatrix} \begin{cases} \phi' \\ \psi' \end{cases} = \begin{bmatrix} M & V \\ M_{\rho} & V_{\rho} \end{bmatrix} \begin{cases} \phi' \\ \psi' \end{cases} = \begin{cases} 0 \\ 0 \end{cases}$

SVD updating terms (clamped case) $\begin{bmatrix} C \end{bmatrix} = \begin{bmatrix} (SM^{C})^{T} \end{bmatrix}$

$$\begin{split} \mathcal{L} = \begin{bmatrix} (SM_{1}^{C})^{T} \end{bmatrix} \\ = \begin{bmatrix} \Phi & 0 & 0 & 0 \\ 0 & \Phi & 0 & 0 \\ 0 & 0 & \Phi & 0 \\ 0 & 0 & 0 & \Phi \end{bmatrix} \begin{bmatrix} \Sigma_{U} & \Sigma_{U_{\theta}} \\ \Sigma_{\Theta} & \Sigma_{\Theta_{\theta}} \\ \Sigma_{M} & \Sigma_{M_{\theta}} \\ \Sigma_{V} & \Sigma_{V_{\theta}} \end{bmatrix}_{8N \times 4N} \begin{bmatrix} \Phi^{-1} & 0 \\ 0 & \Phi^{-1} \end{bmatrix} \end{split}$$

SVD updating terms (clamped case)

Based on the least squares

$$\begin{bmatrix} C \end{bmatrix}^{T} \begin{bmatrix} C \end{bmatrix} = \begin{bmatrix} \Phi & 0 \\ 0 & \Phi \end{bmatrix} \begin{bmatrix} D \end{bmatrix}_{4N \times 4N} \begin{bmatrix} \Phi^{-1} & 0 \\ 0 & \Phi^{-1} \end{bmatrix}$$
$$\det \begin{bmatrix} C \end{bmatrix}^{T} \begin{bmatrix} C \end{bmatrix} = \det \begin{bmatrix} D \end{bmatrix}$$

$$= \prod_{\ell=-(N-1)} [(\lambda_{\ell}^{[U]} \mu_{\ell}^{[\Theta]} - \mu_{\ell}^{[U]} \lambda_{\ell}^{[\Theta]})^{2} + (\lambda_{\ell}^{[U]} \mu_{\ell}^{[M]} - \mu_{\ell}^{[U]} \lambda_{\ell}^{[M]})^{2}$$

$$+ (\lambda_{\ell}^{[U]} \mu_{\ell}^{[V]} - \mu_{\ell}^{[U]} \lambda_{\ell}^{[V]})^{2} + (\lambda_{\ell}^{[\Theta]} \mu_{\ell}^{[M]} - \mu_{\ell}^{[\Theta]} \lambda_{\ell}^{[M]})^{2} \\ + (\lambda_{\ell}^{[\Theta]} \mu_{\ell}^{[V]} - \mu_{\ell}^{[\Theta]} \lambda_{\ell}^{[V]})^{2} + (\lambda_{\ell}^{[M]} \mu_{\ell}^{[V]} - \mu_{\ell}^{[M]} \lambda_{\ell}^{[V]})^{2}]$$

SVD updating terms (clamped case)

The only possibility for zero determinant of [D] (1) $(\lambda_{\ell}^{[U]}\mu_{\ell}^{[\Theta]} - \mu_{\ell}^{[U]}\lambda_{\ell}^{[\Theta]}) = 0, \quad (\lambda_{\ell}^{[U]}\mu_{\ell}^{[M]} - \mu_{\ell}^{[U]}\lambda_{\ell}^{[M]}) = 0, \quad (\lambda_{\ell}^{[U]}\mu_{\ell}^{[V]} - \mu_{\ell}^{[\Theta]}\lambda_{\ell}^{[M]}) = 0, \quad (\lambda_{\ell}^{[\Theta]}\mu_{\ell}^{[M]} - \mu_{\ell}^{[\Theta]}\lambda_{\ell}^{[M]}) = 0, \quad (\lambda_{\ell}^{[\Theta]}\mu_{\ell}^{[V]} - \mu_{\ell}^{[\Theta]}\lambda_{\ell}^{[V]}) = 0, \quad (\lambda_{\ell}^{[\Theta]}\mu_{\ell}^{[V]} - \mu_{\ell}^{[M]}\lambda_{\ell}^{[V]}) = 0.$ at the same time for the same ℓ .

The common term is

$$J_{\ell}(\lambda r)I_{\ell+1}(\lambda r) + J_{\ell+1}(\lambda r)I_{\ell}(\lambda r) = 0$$

True eigenequation

M Conclusions

- 1. Since any two combinations of the four types of potentials, six options(C_2^4) were considered.
- 2. Spurious eigenequation only depends on the adopted kernel function, while the true eigenequation is relevant to the specified boundary condition.
- **3.** True eigenequation can be extract out by using **SVD** updating term.

- 1. J. T. Chen, M. H. Chang, I. L. Chung and Y. C. Cheng, 2002, <u>Comments on eigenmode analysis of arbitrarily shaped two-</u> dimensional cavities by the method of point matching, J. Acoust. Soc. Amer., Vol.111, No.1, pp.33-36. (SCI and EI)
- 2. J. T. Chen, M. H. Chang, K. H. Chen and S. R. Lin, 2002, <u>Boundary collocation method with meshless concept for acoustic eigenanalysis of two-dimensional cavities using radial basis function</u>, Journal of Sound and Vibration, Vol.257, No.4, pp.667-711 (SCI and EI)
- 3. J. T. Chen, M. H. Chang, K. H. Chen, I. L. Chen, 2002, <u>Boundary collocation method for acoustic eigenanalysis of three-</u> <u>dimensional cavities using radial basis function</u>, Computational Mechanics, Vol.29, pp.392-408. (SCI and EI)
- 4. J. T. Chen, S. R. Kuo, K. H. Chen and Y. C. Cheng, 2000, <u>Comments on "vibration analysis of arbitrary shaped membranes</u> using non-dimensional dynamic influence function", Journal of Sound and Vibration, Vol.235, No.1, pp.156-171. (SCI and EI)
- 5. J. T. Chen, I. L. Chen, K. H. Chen and Y. T. Lee, 2003, <u>Comments on "Free vibration analysis of arbitrarily shaped plates</u> with clamped edges using wave-type function.", Journal of Sound and Vibration, Vol.262, pp.370-378. (SCI and EI)
- 6. J. T. Chen, I. L. Chen, K. H. Chen, Y. T. Yeh and Y. T. Lee, 2003, <u>A meshless method for free vibration analysis of arbitrarily shaped plates with clamped boundaries using radial basis function</u>, Engineering Analysis with Boundary Elements, Accepted. (SCI and EI)

歡迎參觀海洋大學力學聲響振動實驗室 烘焙雞及捎來伊妹兒

http://ind.ntou.edu.tw/~msvlab/

E-mail: jtchen@mail.ntou.edu.tw

Journal of the Chinese Institute of Engineers Call for Papers

Special Issue on Meshless Methods

If you are interested, please obser to the following schedule :

- 1. Abstract due : Mar. 31, 2002
- 2. Full paper due : Jun. 30, 2003
- 3. Initial acceptance/rejection: Sep. 30, 2003
- 4. Final, modified manuscript due : Dec. 31, 2003
- 5. Editing deadline : Mar. 31, 2004

Guest Editors:

Professor D. L. Young, Professor C. S. Chen, Professor A. H. -D. Cheng,

Professor H. -K. Hong, Professor J. T. Chen

<u>第七屆邊界元素法會議</u>

Betech 2003

ICOME 2003

Meshless work shop

國際邊界元素法電子期刊

There is nothing more practical than the right theory. Whether the theory is right or not depends on the experiment

Thanks for your kind attention

