HOMEWORK #4 (Chapter 2 First –Order Differential Equations)

1. Suppose M(x, y)dx + N(x, y)dy = 0 is a nonexact differential equation. Under certain conditions integrating factors (see Problem 29 and 30) can be found in a straightforward manner. If $(M_y - N_x)/N = p(x)$, that is a function of x alone, then an integrating factor is $\mu(x) = e^{\int p(x)dx}$. If $(N_x - M_y)/M = q(y)$, that is a function of y alone, then an integrating

factor is $\mu(y) = e^{\int q(y)dy}$. In Problem (a),(b) (33,34) ,solve the given differential equation by

finding an appropriate integrating factor.

(a) $6xydx + (4y + 9x^2)dy = 0$

(b)
$$\cos x dx + (1 + \frac{2}{y}) \sin x dy = 0$$

2. Solve $(y')^2 - xy' + y = 0$ and plot the graph of general solution and singular solution.

- 3. A Bernoulli equation of $y' + xy = xy^2$,
 - (a) Homeogeneous (Yes or No), why?
 - (b) O.D.E or P.D.E, why?
 - (c) Linear or nonlinear, why?
 - (d) First-order or Second-order, why?
 - (e) Separable (Yes or No), why?
 - (f) Exact (Yes or No), why?
 - (g) Solve by Separable variable method.
 - (h) Solve by linear O.D.E method (Convert the O.D.E to a linear equation by using the change of variable method).
 - (i) Solve by the Exact O.D.E method.

4. The Ricatti equation
$$y' = \frac{1}{2x}y^2 - \frac{1}{x}y - \frac{4}{x}$$
 by using the solution $y_2 = y_1 + \frac{1}{z}$ with $y_1 = 4$,
we obtain $y_2 = 4 + \frac{6x^3}{C - x^3}$, $C \in \mathbb{R}$.

(a) By setting C=0, we have $y_2 = -2$, solve $y_3 = -2 + \frac{1}{z}$, please find y_3 .

- (b) $y_3 = y_2$, Yes or No?
- (c) The Ricatti equation is linear or nonlinear?