Engineering Mathematics I HW#2 2B

1) Given a family F of curves Xx*> — Ky =1, a) show that the slopes of
two lines, orthogonal to each other, are negative reciprocals,
b)describe the definition of orthogonal trajectories of a given family of
curves, ¢)find the family of orthogonal trajectories of the given family

F of curves.

a) As shown on the right, two curves intersect at the point P.

Line A and Line B are their tangents at P.

The slope of Line Bis vy, = % =tan0 in the x-y plane
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The slope of Line Ais vy, = % =tan(0 +n/2)= sin(0+n/2)/cos(0+n/2)
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b) Two families of curves, or trajectories, are orthogonal if each curve of
the first family is orthogonal to each curve of the second family wherever
an intersection occurs.

c) X>)—Ky=1=> d(x*>-Ky)/dx=d(1)/dx=»2x-Ky =0

.2X2xy
9 = — =
y K x*-1

b

x* -1
2xy

2
Orthogonal trajectories y' =- > y* =1In|X —X? +C



2) A 16-meter-long chain weighing p kg per meter hangs over a small
pulley (as shown in Fig. 1.16 of the textbook), which is 20 meters
above the floor. Initially, the chain is held at rest, with 7 meters on one
side and 9 meters on the other side. How long after the chain is
released, and with what velocity, a) as it becomes 4 meters on one side

and 12 meters on the other side, b) will it leave the pulley ?
It will be detailed in the class.

3) Solve the Problem 3. in Section 1.5 Problems of the textbook.
Ans: Consider y—Xxy =0
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for some constants a, b = (b+1)=—(a+1) =DPa+b=-2

Note: by the general form, %M +vﬂ :@N +v%
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it seems that we can do something more. And we will do it in the class.



