Engineering Mathematics I HW\＃2 日河工 2B

1）Given a family F of curves $x^{2}-K y=1$ ，a）show that the slopes of two lines，orthogonal to each other，are negative reciprocals， b）describe the definition of orthogonal trajectories of a given family of curves，c）find the family of orthogonal trajectories of the given family F of curves．
a）As shown on the right，two curves intersect at the point P ． Line A and Line B are their tangents at P ．
The slope of Line B is $y_{B}{ }^{\prime}=\frac{d y}{d x}=\tan \theta$ in the $x-y$ plane

The slope of Line A is $y_{A}{ }^{\prime}=\frac{d y}{d x}=\tan (\theta+\pi / 2)=\sin (\theta+\pi / 2) / \cos (\theta+\pi / 2)$

$$
\begin{aligned}
& =\frac{[\sin (\theta) \cos (\pi / 2)+\cos (\theta) \sin (\pi / 2)]}{[\cos (\theta) \cos (\pi / 2)-\sin (\theta) \sin (\pi / 2)]} \\
& =\frac{[\cos (\theta)]}{[-\sin (\theta)]}=-1 / \tan (\theta)
\end{aligned}
$$

$\therefore y_{A}^{\prime} y_{B}^{\prime}=-1$
b）Two families of curves，or trajectories，are orthogonal if each curve of the first family is orthogonal to each curve of the second family wherever an intersection occurs．
c）$x^{2}-K y=1 \rightarrow d\left(x^{2}-K y\right) / d x=d(1) / d x \rightarrow 2 x-K y^{\prime}=0$

$$
\rightarrow y^{\prime}=\frac{2 x}{K}=\frac{2 x y}{x^{2}-1},
$$

Orthogonal trajectories $y^{\prime}=-\frac{x^{2}-1}{2 x y} \rightarrow y^{2}=\ln |x|-\frac{x^{2}}{2}+C$
2) A 16-meter-long chain weighing ρ kg per meter hangs over a small pulley (as shown in Fig. 1.16 of the textbook), which is 20 meters above the floor. Initially, the chain is held at rest, with 7 meters on one side and 9 meters on the other side. How long after the chain is released, and with what velocity, a) as it becomes 4 meters on one side and 12 meters on the other side, b) will it leave the pulley?

It will be detailed in the class.
3) Solve the Problem 3. in Section 1.5 Problems of the textbook.

Ans: Consider $y-x y^{\prime}=0$
a) $M(x, y)=y, \quad N(x, y)=-x$

$$
\frac{\partial M}{\partial y}=\frac{\partial y}{\partial y}=1, \quad \frac{\partial N}{\partial x}=\frac{\partial(-x)}{\partial x}=-1 \quad \rightarrow \frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}
$$

By theorem 1.1, $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}=\Rightarrow y-x y^{\prime}=0$ is not exact.
b) $\frac{\partial(\mu M)}{\partial y}=\frac{\partial(\mu N)}{\partial x} \rightarrow \frac{\partial \mu}{\partial y} M+\mu \frac{\partial M}{\partial y}=\frac{\partial \mu}{\partial x} N+\mu \frac{\partial N}{\partial x}$
\rightarrow For $\mu(x)$ is a function of x alone, $\frac{\partial \mu}{\partial y}=0$
$\rightarrow \mu(x)=-x \frac{d \mu(x)}{d x}-\mu(x), 2 \mu(x)+x \frac{d \mu(x)}{d x}=0$
$\rightarrow-\frac{d \mu}{\mu}=2 \frac{d x}{x},-\ln |\mu|=2 \ln |x|+C, \mu^{-1}=x^{2} \quad($ with $\mathrm{C}=0)$
$\Rightarrow \mu=\frac{1}{x^{2}}$
c) $\frac{\partial(v M)}{\partial y}=\frac{\partial(v N)}{\partial x} \rightarrow \frac{\partial v}{\partial y} M+v \frac{\partial M}{\partial y}=\frac{\partial v}{\partial x} N+v \frac{\partial N}{\partial x}$
\rightarrow For $v(y)$ is a function of y alone, $\frac{\partial v}{\partial x}=0$
$\Rightarrow \frac{d v(y)}{d y} y+v(y)=-v(y), \quad 2 v(y)+y \frac{d v(y)}{d y}=0$
$\rightarrow-\frac{d v}{v}=2 \frac{d y}{y},-\ln |v|=2 \ln |y|+C, \quad v^{-1}=y^{2} \quad($ with $\mathrm{C}=0)$
$\rightarrow \mu=\frac{1}{y^{2}}$
d) $\frac{\partial\left(x^{a} y^{b} M\right)}{\partial y}=\frac{\partial\left(x^{a} y^{b} N\right)}{\partial x}, \frac{\partial\left(x^{a} y^{b}\right)}{\partial y} M+x^{a} y^{b} \frac{\partial M}{\partial y}=\frac{\partial\left(x^{a} y^{b}\right)}{\partial x} N+x^{a} y^{b} \frac{\partial N}{\partial x}$
$b x^{a} y^{b-1} y+x^{a} y^{b}=a x^{a-1} y^{b}(-x)-x^{a} y^{b}, \quad b x^{a} y^{b}+x^{a} y^{b}=-a x^{a} y^{b}-x^{a} y^{b}$
$\rightarrow(b+1) x^{a} y^{b}=-(a+1) x^{a} y^{b}$
for some constants $a, b \rightarrow(b+1)=-(a+1) \quad \rightarrow a+b=-2$

Note: by the general form, $\frac{\partial v}{\partial y} M+v \frac{\partial M}{\partial y}=\frac{\partial v}{\partial x} N+v \frac{\partial N}{\partial x}$
it seems that we can do something more. And we will do it in the class.

