
                 Engineering Mathematics I  HW#2    日河工 2B 

                                                   

1) Given a family F of curves 12 =− Kyx , a) show that the slopes of 

two lines, orthogonal to each other, are negative reciprocals, 

b)describe the definition of orthogonal trajectories of a given family of 

curves, c)find the family of orthogonal trajectories of the given family 

F  of curves. 

a) As shown on the right, two curves intersect at the point P. 

Line A and Line B are their tangents at P. 

   The slope of Line B is θtan' ==
dx
dyyB  in the x-y plane 
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   The slope of Line A is )2/πθtan(' +==
dx
dyyA = 
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b) Two families of curves, or trajectories, are orthogonal if each curve of 

the first family is orthogonal to each curve of the second family wherever 

an intersection occurs. 

c) 12 =− Kyx  dxddxKyxd /)1(/)( 2 =− 02 ' =− Kyx  
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2) A 16-meter-long chain weighing ρ  kg per meter hangs over a small 

pulley (as shown in Fig. 1.16 of the textbook), which is 20 meters 

above the floor. Initially, the chain is held at rest, with 7 meters on one 

side and 9 meters on the other side. How long after the chain is 

released, and with what velocity, a) as it becomes 4 meters on one side 

and 12 meters on the other side, b) will it leave the pulley ? 

 

It will be detailed in the class. 

 

3) Solve the Problem 3. in Section 1.5 Problems of the textbook. 

Ans: Consider 0' =− xyy  
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By theorem 1.1, 
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   For )(µ x  is a function of x  alone, 0µ
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Note: by the general form, 
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it seems that we can do something more. And we will do it in the class.  


