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               Engineering Mathematics I  HW#9    日河工 2B 

 

The second-order differential equation 0)( 22'''2 =−++ yxxyyx ν  is called 

Bessel’s equation of order ν , for 0≥ν . Solution of Bessel’s equation are 

called Bessel functions. (hint: Example 4.12) 

1) Find one Frobenius solution of Bessel’s equation of order 1=ν  

2) Show the Frobenius series solution is convergent by using the ratio test 

(hint: Theorem 4.6) 

 
1)First of all, zero is a regular singular point of Bessel’s equation, so 
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Upon substituting this series into Bessel’s equation 
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Shift indices in the third summation as 
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Then combine terms to write 
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Setting the coefficient of rx  equal to zero (remember 00 ≠c  as part of 

the Frobenius method), we obtain the indicial equation 
0)1()1( =−+− rrr 1,1 −=r  

Note: usually we have 21 rr ≥  in the Frobenius method. 
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On the other hand, with 11 =r ,  1
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For the equation (*) to hold 
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Since 01 =c  , this equation yields 0...53 ==== oddccc . 

 
For the even-indexed coefficients, write 
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One Frobenius solution of Bessel’s equation of order 1=ν  is 
therefore 
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of order 1=ν . 
 
Note that, we here just find one solution of Bessel’s equation. You are 
encouraged to try for the sencond solution for excersie.  Bessel’s 
functions of the second kind of order 1=ν . 
 
2)By thorem 4.6 ratio test, 
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Q   the Frobenius series solution is convergent for all x. 

Note that, you should be familiar with the ratio test. 
 


