Mid-term Exam I

Nov. 2004

1) Verify the given function is a solution of the differential equation (10 scores)

a)
$$y' = -\frac{2y + e^x}{2x}$$
 for $x > 0$; $\varphi(x) = \frac{C - e^x}{2x}$
b) $y' = y^2 e^{-x}$, $\varphi(x) = \frac{1}{e^{-x} - k}$

2) Verify by implicit differentiation that the given equation implicitly defines a solution of the differential equation (5 scores)

$$y^{2} + xy - 2x^{2} - 3x - 2y = C$$
; $y - 4x - 3 + (x + 2y - 2)y' = 0$

3) Consider $y' = \frac{y}{x} + 1$ for all x > 0 (20 scores)

- a) get the particular solution corresponding to the initial solution y(1)=0 (10 scores)
- b) draw a direction field of the differential equation and the integral curve through (1, 0) = 1 is (1, 0) = 0 (0, (10, 0))
 - (1, 0) *hint*: $\ln(2) \cong 0.69$ (10 scores)
- 4) Given a family F of curves x² Ky² = 1 (25 scores)
 a) describe the definition of orthogonal trajectories of a given family of curves (5 scores)

b) find the family of orthogonal trajectories of the given family F of curves (15 scores)

c) plot the orthogonal families together on the x-y plane (5 scores)

5) Solve $y' + y/x = \cos(x)$, x > 0 (15 scores)

6) Solve $x - xy^2 - y' = 0$ (15 scores)

7) Solve
$$y' = \frac{y}{x-y}$$
 (10 scores)