Mid-term Exam I

Nov. 2004

1) Verify the given function is a solution of the differential equation (10 scores)
a) $y^{\prime}=-\frac{2 y+e^{x}}{2 x}$ for $x>0 ; \varphi(x)=\frac{C-e^{x}}{2 x}$
b) $y^{\prime}=y^{2} e^{-x}, \varphi(x)=\frac{1}{e^{-x}-k}$
2) Verify by implicit differentiation that the given equation implicitly defines a solution of the differential equation (5 scores)

$$
y^{2}+x y-2 x^{2}-3 x-2 y=C ; \quad y-4 x-3+(x+2 y-2) y^{\prime}=0
$$

3) Consider $y^{\prime}=\frac{y}{x}+1$ for all $x>0 \quad(20$ scores $)$
a) get the particular solution corresponding to the initial solution $y(1)=0$ (10 scores)
b) draw a direction field of the differential equation and the integral curve through $(1,0)$ hint: $\ln (2) \cong 0.69$ (10 scores)
4) Given a family F of curves $x^{2}-K y^{2}=1 \quad$ (25 scores)
a) describe the definition of orthogonal trajectories of a given family of curves (5 scores)
b) find the family of orthogonal trajectories of the given family F of curves (15 scores)
c) plot the orthogonal families together on the $x-y$ plane (5 scores)
5) Solve $y^{\prime}+y / x=\cos (x), \quad x>0$ (15 scores)
6) Solve $x-x y^{2}-y^{\prime}=0 \quad(15$ scores $)$
7) Solve $y^{\prime}=\frac{y}{x-y} \quad(10$ scores $)$
