QUIZ－3 ${ }^{\text {th }}$

日河工 2B

Nov．3， 2004
1）Solve the differential equation $3 y^{\prime}=4 x / y^{2}$（15 scores）
$\rightarrow 3 y^{2} d y=4 x d x$ ，the differential equation is separable．
By direct integration， $\int 3 y^{2} d y=\int 4 x d x \quad \rightarrow y^{3}=2 x^{2}+C$

2）Solve the differential equation $\frac{2 x y}{y-1}-y^{\prime}=0$（15 scores）
$\rightarrow \frac{y-1}{y} d y=2 x d x, y \neq 0, \int\left(1-\frac{1}{y}\right) d y=\int 2 x d x, y-\ln |y|=x^{2}+C$
The general solution is $y-\ln |y|=x^{2}+C$
But $y=0$ is still a solution of the DE （try it by substitution），though it cannot be contained in the expression for the general solution for any choice of C ．

3）a）What is the slope of line A $y=x / 2+1$（5 scores）？plot the line A in $x-y$ plane（5 scores）

$$
\text { slope }=y^{\prime}=\frac{d y}{d x}=1 / 2
$$

b）What is the slope of line B $y=-2 x+2$（5 scores）？plot the line B in $x-y$ plane（5 scores）

$$
\text { slope }=y^{\prime}=\frac{d y}{d x}=-2
$$

c) Consider the family F of curves that are graphs of $F(x, y, K)=y-K x^{2}=0$

Find the family G of orthogonal trajectories of the family F of curves (20 scores)
See p.56~57 of the textbook
4)a)Verify that $y_{1}(x)=e^{-3 x}, \quad y_{2}(x)=e^{-8 x}$ are solutions of the differential equation $y^{\prime \prime}+11 y^{\prime}+24 y=0 \quad(10$ scores $)$
b)Show that their Wronskian is not zero (10 scores)
c)Write the general solution of the differential equation (5 scores)
d)Find the solution of the initial value problem with $y(0)=1, \quad y^{\prime}(0)=4 \quad(10$ scores)
a) $y_{1}(x)=e^{-3 x}, \quad y_{2}(x)=e^{-8 x}$

$$
\begin{aligned}
& y_{1}^{\prime}(x)=-3 e^{-3 x}, \quad y_{2}^{\prime}(x)=-8 e^{-8 x} \\
& y_{1}^{\prime \prime}(x)=9 e^{-3 x}, \quad y_{2}^{\prime}(x)=64 e^{-8 x} \\
\Rightarrow & y_{1}^{\prime \prime}+11 y_{1}^{\prime}+24 y_{1}=9 e^{-3 x}+11\left(-3 e^{-3 x}\right)+24 e^{-3 x}=(9-33+24) e^{-3 x}=0 \\
& y_{2}^{\prime \prime}+11 y_{2}^{\prime}+24 y_{1}=64 e^{-8 x}+11\left(-8 e^{-8 x}\right)+24 e^{-8 x}=(64-88+24) e^{-8 x}=0
\end{aligned}
$$

b) $W(x)=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}=e^{-3 x}\left(-8 e^{-8 x}\right)-\left(-3 e^{-3 x}\right) e^{-8 x}=-5 e^{-11 x} \neq 0$
c) $\because W(x) \neq 0 \rightarrow y_{1}, \quad y_{2}$ are linearly independent
\rightarrow the general solution is $c_{1} y_{1}+c_{2} y_{2}$ with $c_{1}, \quad c_{2}$ arbitrarily constants.
d) $y(0)=c_{1} y_{1}(0)+c_{2} y_{2}(0)=c_{1} e^{0}+c_{2} e^{0}=c_{1}+c_{2}=1$

$$
\begin{aligned}
& y^{\prime}(0)=c_{1} y_{1}^{\prime}(0)+c_{2} y_{2}^{\prime}(0)=c_{1}\left(-3 e^{0}\right)+c_{2}\left(-8 e^{0}\right)=-3 c_{1}-8 c_{2}=4 \\
& \rightarrow c_{1}=12 / 5, \quad c_{2}=-7 / 5 \rightarrow \quad y=12 y_{1} / 5-7 y_{2} / 5=12 e^{-3 x} / 5-7 e^{-8 x} / 5
\end{aligned}
$$

5) a)Verify that $y_{1}(x)=\cos (x), \quad y_{2}(x)=\sin (x)$ are solutions of the differential equation $y^{\prime \prime}+y=0 \quad(10$ scores)
b)Show that their Wronskian is not zero (10 scores)
c)Write the general solution of the differential equation (5 scores)

See example 2.1, 2.2 of the textbook.

