Nov．24， 2004
1）Verify by implicit differentiation that the given equation implicitly defines a solution of the differential equation（ 20 scores）

$$
y^{2}+x y-2 x^{2}-3 x-2 y=C ; y-4 x-3+(x+2 y-2) y^{\prime}=0
$$

$$
d\left(y^{2}+x y-2 x^{2}-3 x-2 y\right) / d x=d(C) / d x
$$

$$
=>2 y y^{\prime}+y+x y^{\prime}-4 x-3-2 y^{\prime}=0
$$

$$
=>y-4 x-3+x y^{\prime}+2 y y^{\prime}-2 y^{\prime}=0
$$

$$
=>y-4 x-3+(x+2 y-2) y^{\prime}=0
$$

2）Consider $y^{\prime}=\frac{y}{x}+1$ for all $x>0 \quad(80$ scores）
a）get the particular solution corresponding to the initial solution $y(1)=0$（ 30 scores）
b）draw a direction field of the differential equation and the integral curve through $(1,0)$ hint： $\ln (2) \cong 0.69$（ 50 scores）
a）$y^{\prime}=\frac{y}{x}+1==>y^{\prime}-\frac{y}{x}=1$
$\Rightarrow \mu(x)=e^{\int-\frac{1}{x} d x}=e^{\ln (1 / x)}=\frac{1}{x}$
$\rightarrow \frac{y^{\prime}}{x}-\frac{y}{x^{2}}=\frac{1}{x} \quad, \quad\left(\frac{y}{x}\right)^{\prime}=\frac{1}{x}, \quad \frac{y}{x}=\int \frac{1}{x} d x=\ln (x)+C$
$\Rightarrow y(x)=x \ln (x)+C x, \quad y(1)=\ln (1)+C=0, \quad C=0$
$\Rightarrow y(x)=x \ln (x)$
b）1st Step－－－for the direction field
$y^{\prime}=f(x, y)=$ constant curves of equal inclination
as shown in the figure，you can set $\mathrm{y}^{\prime}=\mathrm{f}(\mathrm{x}, \mathrm{y})=1,1.5,2,2.5,3,3.5,4,5,7$ ，respectively．
Namely，you first plot the curve of equal inclination $y^{\prime}=\frac{y}{x}+1=2, \quad \Rightarrow y=x$

2nd Step

Along each curve $\mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{C}$ ，draw lineal elements indicating the prescribed slopes（i．e．above－mentioned 1，1．5，2，2．5，3，3．5，4，5，7 ）＝＝＞direction field

The integral curve through $(1,0)$ means the curve of $y(x)=x \ln (x)$ ．

