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1) Verify the given function is a solution of the differential equation  

(10 scores) 
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2) Verify by implicit differentiation that the given equation implicitly defines a 
solution of the differential equation (10 scores) 
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3) Solve the differential equation 2' /43 yxy =  (15 scores) 

xdxdyy 43 2 = , the differential equation is separable. 

By direct integration, xdxdyy 43 2 ∫∫ =    Cxy += 23 2  

 

4) Solve the differential equation )sin(' xyy =+  (20 scores) 

Compare to the general form of linear DE )()(' xqyxpy =+  

)sin()(,1)( xxqxp == , the first-order differential equation is linear. 

 



An integrating factor is xdxdxxp eee == ∫∫ )(  
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The general solution is [ ] xCexxy −+−= )cos()sin(
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Note: Integration by parts 
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5) Solve the differential equation 0
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The general solution is Cxyy +=− 2ln  

But 0=y  is still a solution of the DE (try it by substitution), though it cannot be 
contained in the expression for the general solution for any choice of C . 

 

6) For the differential equation 0)3(1 '2 =−+ − yex y , (a)show that it is not exact, (b) 

find an integrating factor, (c)find the general solution (20 scores) 

a)Compare to 0),(),( ' =+ yyxNyxM , yexNM 23,1 −−==  
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Try to find µ  as just a function of y , 0µ
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y3µln = , note: here we set the integration constant 0=C . ye3µ =  

c)  [ ] 0)3(1 '23 =−+ − yexe yy , 0)3( '33 =−+ yexee yyy  (now it is exact) 

 The general solution is Cexe yy =−3  
 

7) For a first-order differential equation, 
yx

yy
+

=' , check if it is homogeneous, 

then find its general solution. (20 scores) 
See page 40 of the textbook !  
 

8) Consider the Riccati equation, 
x

y
x

y
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y 211 2' −+= , with a solution 1)( =xS . 

Try to get its general solution. Hint: Define a new variable z  by setting 

z
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See page 45 of the textbook !  
 


