QUIZ－2 ${ }^{\text {nd }}$

Oct．20， 2004

1）Verify the given function is a solution of the differential equation

$$
\begin{aligned}
&(10 \text { scores) } \\
& y^{\prime}=\frac{y}{x}+1 ; \varphi(x)=x \ln (x)+C x \text { for all } x>0 \\
& \varphi^{\prime}(x)=\ln (x)+1+C \\
& \frac{\varphi(x)}{x}=\frac{x \ln (x)+C x}{x}=\ln (x)+C \\
& \rightarrow \frac{\varphi(x)}{x}+1=\ln (x)+C+1=\varphi^{\prime}(x)
\end{aligned}
$$

2）Verify by implicit differentiation that the given equation implicitly defines a solution of the differential equation（ 10 scores）

$$
\begin{aligned}
& \quad y^{2}+x y-2 x^{2}-3 x-2 y=C ; \quad y-4 x-3+(x+2 y-2) y^{\prime}=0 \\
& d\left(y^{2}+x y-2 x^{2}-3 x-2 y\right) / d x=d(C) / d x \\
& =\Rightarrow 2 y y^{\prime}+y+x y^{\prime}-4 x-3-2 y^{\prime}=0 \\
& =\Rightarrow y-4 x-3+x y^{\prime}+2 y y^{\prime}-2 y^{\prime}=0 \\
& =\Rightarrow y-4 x-3+(x+2 y-2) y^{\prime}=0
\end{aligned}
$$

3）Solve the differential equation $3 y^{\prime}=4 x / y^{2}$（ 15 scores）
$\rightarrow 3 y^{2} d y=4 x d x$ ，the differential equation is separable．
By direct integration， $\int 3 y^{2} d y=\int 4 x d x \quad \rightarrow y^{3}=2 x^{2}+C$

4）Solve the differential equation $y^{\prime}+y=\sin (x)$（20 scores）

Compare to the general form of linear DE $y^{\prime}+p(x) y=q(x)$
$\rightarrow p(x)=1, \quad q(x)=\sin (x)$ ，the first－order differential equation is linear．
\rightarrow An integrating factor is $e^{\int p(x) d x}=e^{\int d x}=e^{x}$
$\Rightarrow y^{\prime} e^{x}+y e^{x}=e^{x} \sin (x), \frac{d}{d x}\left(y e^{x}\right)=e^{x} \sin (x)$
$\rightarrow d\left(y e^{x}\right)=\int e^{x} \sin (x) d x, y e^{x}=\int e^{x} \sin (x) d x=\frac{1}{2} e^{x}[\sin (x)-\cos (x)]+C$
The general solution is $y=\frac{1}{2}[\sin (x)-\cos (x)]+C e^{-x}$

Note: Integration by parts

$$
\begin{aligned}
& D_{x}[f(x) g(x)]=f(x) g^{\prime}(x)+g(x) f^{\prime}(x) \\
& f(x) g(x)=\int f(x) g^{\prime}(x) d x+\int g(x) f^{\prime}(x) d x \\
& \int f(x) g^{\prime}(x) d x=f(x) g(x)-\int g(x) f^{\prime}(x) d x
\end{aligned}
$$

5) Solve the differential equation $\frac{2 x y}{y-1}-y^{\prime}=0 \quad(15$ scores $)$
$\rightarrow \frac{y-1}{y} d y=2 x d x, y \neq 0, \int\left(1-\frac{1}{y}\right) d y=\int 2 x d x, y-\ln |y|=x^{2}+C$
The general solution is $y-\ln |y|=x^{2}+C$
But $y=0$ is still a solution of the DE (try it by substitution), though it cannot be contained in the expression for the general solution for any choice of C.
6) For the differential equation $1+\left(3 x-e^{-2 y}\right) y^{\prime}=0$, (a)show that it is not exact, (b) find an integrating factor, (c)find the general solution (20 scores)
a)Compare to $M(x, y)+N(x, y) y^{\prime}=0, \rightarrow M=1, \quad N=3 x-e^{-2 y}$

$$
\frac{\partial M}{\partial y}=0, \quad \frac{\partial N}{\partial x}=3, \quad \partial M / \partial y \neq \partial N / \partial x, \text { it is not exact. }
$$

b) $\frac{\partial}{\partial x}(\mu N)=\frac{\partial}{\partial y}(\mu M), \rightarrow \frac{\partial}{\partial x}\left[\mu\left(3 x-e^{-2 y}\right)\right]=\frac{\partial}{\partial y}(\mu)$

Try to find μ as just a function of $y, \rightarrow \frac{\partial \mu}{\partial x}=0$
$\rightarrow \mu \frac{\partial}{\partial x}(3 x)=\frac{\partial \mu}{\partial y}, \frac{\partial \mu}{\partial y}=3 \mu, \quad \frac{d \mu}{\mu}=3 d y, \rightarrow \int \frac{d \mu}{\mu}=\int 3 d y$
$\rightarrow \ln |\mu|=3 y$, note: here we set the integration constant $C=0 . \rightarrow \mu=e^{3 y}$
c) $\rightarrow e^{3 y}\left[1+\left(3 x-e^{-2 y}\right) y^{\prime}\right]=0, e^{3 y}+\left(3 x e^{3 y}-e^{y}\right) y^{\prime}=0 \quad$ (now it is exact)
\rightarrow The general solution is $x e^{3 y}-e^{y}=C$
7) For a first-order differential equation, $y^{\prime}=\frac{y}{x+y}$, check if it is homogeneous, then find its general solution. (20 scores)
See page 40 of the textbook!
8) Consider the Riccati equation, $y^{\prime}=\frac{1}{x} y^{2}+\frac{1}{x} y-\frac{2}{x}$, with a solution $S(x)=1$.

Try to get its general solution. Hint: Define a new variable z by setting
$y=S(x)+\frac{1}{z}(20$ scores $)$

See page 45 of the textbook!

