考 試 科 目	開課系級	考試日期	印製份數	答案紙	命題教師	備 註
工程數學一	二 $A B$	1月19日		$\begin{aligned} & \text { ■ 需 } \\ & \square \text { 不需 } \end{aligned}$	陳桂鴻呂學育	期末考

學生可帶 \square 書本 ■計算機 \square 其他 \qquad皆不可

共2頁，第1頁
1．$A=\left[\begin{array}{cc}0 & 1 \\ -1 & 2\end{array}\right]$ ．
（1）Find all eigenvalues and corresponding eigenvector．3\％
（2）Find generalized eigenvector and obtain the transition matrix P of A ．
（3）Find $P^{-1} \cdot \quad 2 \%$
（4）Find the Jordan canonical form of A by using the similar transform $\left(P^{-1} A P\right)$ ． 5%

2．$A=\left[\begin{array}{cc}1 & -2 \\ -2 & 1\end{array}\right]$
（1）Find eigenvectors and write the transition matrix P of A ． 3%
（2）Find P^{-1} by using the orthogonal matrix property． 3%
（3）Find the diagonal form of A by using the similar transform $\left(P^{-1} A P\right)$ ． 3%
（4）If $f(x)=x^{100}$ ，find the matrix $f(A)$ by using（a）the method of similar transform（matrix function）， 9% （b）Cayley－Hamilton theory．$\quad 9 \%$
（5）Find A^{-1} by using（a）adjoint method， 2%（b）Cayley－Hamilton theory．6\％

3．For the given linear system

$$
\begin{array}{r}
-x_{1}+3 x_{2} \quad=0 \\
x_{1}-2 x_{2}+x_{3}=1 \\
x_{2}+2 x_{3}=0
\end{array}
$$

we can rewrite it as a matrix－vector equation $A X=B$
with the matrix $A=\left(\begin{array}{ccc}-1 & 3 & 0 \\ 1 & -2 & 1 \\ 0 & 1 & 2\end{array}\right)$ ，the vector $X=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$
(1) write out the vector B (1%)
(2) calculate $\operatorname{det} \mathrm{A}(1 \%)$
(3) is the matrix A nonsingular? (1\%)
(4) write out the adjoint of the matrix $A(2 \%)$
(5) find the inverse of the matrix $A(2 \%)$
(6) solve the system to give the vector $X(2 \%)$
(7) for the matrix A, what is the maximum number of independent column vectors? (1\%)
(8) what is the rank of the matrix $A ?(2 \%)$
4. For a given matrix $A=\left(\begin{array}{ccc}0 & -1 & -1 \\ -1 & 0 & -1 \\ -1 & -1 & 0\end{array}\right)$
(1) find the eigenvalues (hint: with 1 as an eigenvalue of multiplicity 2) (2%)
(2) compute $A^{m} ; m=10$ by using Cayley-Hamilton theorem (9%)
(3) find a set of three mutually orthogonal eigenvectors (9\%)
(4) use these vectors obtained in (3) to construct an orthogonal matrix that diagonalizes the matrix A (3\%)
(5) compute $A^{m} ; m=10$ by diagonalizing the matrix A (5\%)
5. For a given conic section of the form $2 x y=1$
(1) write the equation as the matrix product $X^{T} A X=1$, with $X=\binom{x}{y}$ (2\%)
(2) eliminate the $x y$-term by means of an orthogonal matrix and diagonalization (8\%)

