Clairaut's Equation

Oct. 18, 2005

The ordinary differential equation
$y=x \frac{d y}{d x}+f\left(\frac{d y}{d x}\right)$
is called Clairaut's equation with f a given differentiable real function.
To solve the equation we use an auxiliary parameter $p=\frac{d y}{d x}$ and rewrite Eq. (1) as
$y=p x+f(p)$
Differentiating this equation yields
$\frac{d y}{d x}=p=x \frac{d p}{d x}+p+f^{\prime}(p) \frac{d p}{d x}$
or

$$
\begin{equation*}
\left[x+f^{\prime}(p)\right] \frac{d p}{d x}=0 \tag{4}
\end{equation*}
$$

The equation now gives the alternatives

$$
\begin{equation*}
\frac{d p}{d x}=0 \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
x+f^{\prime}(p)=0 \tag{6}
\end{equation*}
$$

Integrating Eq.(5) we obtain $\quad p=C$ with C a constant, and substituting this back into Eq. (1) gives the general solution

$$
\begin{equation*}
y=c x+f(c) \tag{7}
\end{equation*}
$$

Obviously, Eq. (7) represents a family of straight lines.

If Eq. (6) allows to solve p in terms of $x, p=p(x)$, we can write Eq. (1) as

$$
\begin{equation*}
y=x p(x)+f(p(x)) \tag{8}
\end{equation*}
$$

which is satisfying Eq. (1). The solution (8) may not be obtained from Eq. (7) using any value of C. Thus, it is a singular solution and may be obtained by eliminating the parameter p from the equations

$$
\begin{align*}
& y=p x+f(p), \tag{9}\\
& x+f^{\prime}(p)=0 \tag{10}
\end{align*}
$$

And the singular solution presents the envelope of the family (7).

Example:

Consider the equation of Clairaut

$$
\begin{aligned}
& y=x \frac{d y}{d x}-\left(\frac{d y}{d x}\right)^{2} \\
& \rightarrow f\left(\frac{d y}{d x}\right)=-\left(\frac{d y}{d x}\right)^{2} \rightarrow f(p)=-(p)^{2} \text { with } p=\frac{d y}{d x} \quad \rightarrow f^{\prime}(p)=-2 p
\end{aligned}
$$

By Eq. (7), the general solution

$$
\Rightarrow y=c x+f(c) \quad \Rightarrow y=c x-c^{2}
$$

By Eqs. (9), (10), the singular solution

$$
\rightarrow x+f^{\prime}(p)=0 \quad \rightarrow x-2 p=0
$$

$\rightarrow p=\frac{d y}{d x}=\frac{x}{2}$
$\rightarrow y=x \frac{d y}{d x}-\left(\frac{d y}{d x}\right)^{2}=x \frac{x}{2}-\left(\frac{x}{2}\right)^{2}=\frac{x^{2}}{4}$

