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The ordinary differential equation 
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is called Clairaut's equation with f a given differentiable real function. 

To solve the equation we use an auxiliary parameter dx
dyp =  and rewrite Eq. (1) as  

)( pfpxy +=                (2) 

Differentiating this equation yields 
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or  
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The equation now gives the alternatives  
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 and  

0)(' =+ pfx                 (6) 

Integrating Eq.(5) we obtain cp =  with c  a constant, and substituting this back into Eq. 
(1) gives the general solution 
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Obviously, Eq. (7) represents a family of straight lines. 

If Eq. (6) allows to solve p in terms of x , )(xpp = , we can write Eq. (1) as 
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which is satisfying Eq. (1). The solution (8) may not be obtained from Eq. (7) using any value 
of c . Thus, it is a singular solution and may be obtained by eliminating the parameter p  
from the equations  
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And the singular solution presents the envelope of the family (7). 
 
 
Example: 
Consider the equation of Clairaut 
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By Eq. (7), the general solution 
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2ccxy −=   

 
By Eqs. (9), (10), the singular solution 
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