Find a second-order differential equation having the function as general solution a) $c_{1} e^{-2 x}+c_{2} e^{3 x}$
\rightarrow the roots of the characteristic equation are $\lambda_{1}=-2, \quad \lambda_{2}=3$
\rightarrow the characteristic equation is $(\lambda+2)(\lambda-3)=0, \lambda^{2}-\lambda-6=0$
\rightarrow the differential equation is $y^{\prime \prime}-y^{\prime}-6 y=0$
b) $c_{1} e^{-3 x} \cos (2 x)+c_{2} e^{-3 x} \sin (2 x)$
$\Rightarrow c_{1} e^{-3 x} \cos (2 x)+c_{2} e^{-3 x} \sin (2 x)=e^{-3 x}\left[c_{1} \cos (2 x)+c_{2} \sin (2 x)\right]$
\rightarrow the roots of the characteristic equation are $\lambda_{1}=-3+2 i, \quad \lambda_{2}=-3-2 i$
\rightarrow the characteristic equation is $(\lambda+3-2 i)(\lambda+3+2 i)=0, \quad \lambda^{2}+6 \lambda+13=0$
\rightarrow the differential equation is $y^{\prime \prime}+6 y^{\prime}+13 y=0$
c) $c_{1} e^{-4 x}+c_{2} x e^{-4 x}$
\rightarrow the roots of the characteristic equation are $\lambda_{1}=-4, \quad \lambda_{2}=-4$
\rightarrow the characteristic equation is $(\lambda+4)(\lambda+4)=0, \quad \lambda^{2}+8 \lambda+16=0$
\rightarrow the differential equation is $y^{\prime \prime}+8 y^{\prime}+16 y=0$

