Find a second-order differential equation having the function as general solution

a) c₁e^{-2x} + c₂e^{3x}
→ the roots of the *characteristic equation* are λ₁ = -2, λ₂ = 3
→ the *characteristic equation* is (λ+2)(λ-3) = 0, λ² - λ - 6 = 0
→ the differential equation is y" - y' - 6y = 0

b)
$$c_1 e^{-3x} \cos(2x) + c_2 e^{-3x} \sin(2x)$$

 $\Rightarrow c_1 e^{-3x} \cos(2x) + c_2 e^{-3x} \sin(2x) = e^{-3x} [c_1 \cos(2x) + c_2 \sin(2x)]$
 \Rightarrow the roots of the *characteristic equation* are $\lambda_1 = -3 + 2i$, $\lambda_2 = -3 - 2i$
 \Rightarrow the *characteristic equation* is $(\lambda + 3 - 2i)(\lambda + 3 + 2i) = 0$, $\lambda^2 + 6\lambda + 13 = 0$
 \Rightarrow the differential equation is $y'' + 6y' + 13y = 0$

c) $c_1 e^{-4x} + c_2 x e^{-4x}$

- → the roots of the *characteristic equation* are $\lambda_1 = -4$, $\lambda_2 = -4$
- → the *characteristic equation* is $(\lambda + 4)(\lambda + 4) = 0$, $\lambda^2 + 8\lambda + 16 = 0$
- → the differential equation is y'' + 8y' + 16y = 0