1) $\begin{aligned} & y=c_{1} e^{x}+c_{2} x e^{x} \quad \text { (Problem 5.) }\end{aligned}$

Compute y^{\prime} and $y^{\prime \prime}$ and then combine these results as a linear second-order differential equation that is free of the symbols c_{1} and c_{2} and has the form $F\left(y, y^{\prime}, y^{\prime \prime}\right)=0$. The symbols c_{1} and c_{2} represent constants.

In Problems 2)~4), match each of the given differential equations with one or more of the solutions:
(a) $y=0$
(b) $y=2$
(c) $y=2 x$
(d) $y=2 x^{2}$
2) $x y^{\prime}=2 y \quad$ (Problem 7.)
3) $y^{\prime}=2 y-4 \quad$ (Problem 9.)
4) $y^{\prime \prime}+9 y=18 \quad$ (Problem 11.)
5) What is the slope of the tangent line to the graph of the solution $y^{\prime}=6 \sqrt{y}+5 x^{3}$ that through ($-1,4$) ? (Problem 20.)
6) Verify that the indicated function is a particular solution of the given differential equation. Given an interval of definition \boldsymbol{I} for the solution.

$$
x^{2} y^{\prime \prime}+x y^{\prime}+y=0 ; \quad y=\sin (\ln x)
$$

