
HOMEWORK #11 (Chapter 8 Exercises--- Matrices) 
For yourself 

1) Verify that the given matrix satisfies its own characteristic equation 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

54
21

A   (page 403, Problem 1) 

2) Use the method of section to compute mA . Use this result to compute the indicated power 
of the matrix A  
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A ; 10=m   (page 403, Problem 7) 

3) Show that the given matrix has an eigenvalue 1λ  of multiplicity two. As a consequence, 

the equations 110 λλ ccm +=  does not yield enough independent equations to form a system 

for determining the coefficients 10 , cc . Use the derivative (with respect toλ ) of the 
equation evaluated at 1λ  as the extra needed equation to form a system. Compute mA and 
use this result to compute the indicated power of the matrix A  
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4) Proceed as in Example 3 to construct an orthogonal matrix from the eigenvectors of the 
given symmetric matrix 
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5) Use Theorem 8.29 to find values of a and b so that the given matrix is orthogonal 
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6) (page 410, Problem 21) 
a) Verify that  
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are eigenvectors for the symmetric matrix 
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corresponding to the eigenvalues 9,9 321 −=== λλλ , respectively 
b) Find a set of three mutually orthogonal eigenvectors for the matrix A in part a) 

   


