HOMEWORK \#11 (Chapter 8 Exercises--- Matrices)

For yourself

1) Verify that the given matrix satisfies its own characteristic equation

$$
A=\left(\begin{array}{cc}
1 & -2 \\
4 & 5
\end{array}\right) \quad \text { (page 403, Problem 1) }
$$

2) Use the method of section to compute A^{m}. Use this result to compute the indicated power of the matrix A

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2 \\
0 & 1 & 0
\end{array}\right) ; m=10 \quad \text { (page 403, Problem 7) }
$$

3) Show that the given matrix has an eigenvalue λ_{1} of multiplicity two. As a consequence, the equations $\lambda^{m}=c_{0}+c_{1} \lambda_{1}$ does not yield enough independent equations to form a system for determining the coefficients $c_{0}, \quad c_{1}$. Use the derivative (with respect to λ) of the equation evaluated at λ_{1} as the extra needed equation to form a system. Compute A^{m} and use this result to compute the indicated power of the matrix A

$$
A=\left(\begin{array}{cc}
7 & 3 \\
-3 & 1
\end{array}\right) ; \quad m=6 \quad \text { (page 403, Problem 11) }
$$

4) Proceed as in Example 3 to construct an orthogonal matrix from the eigenvectors of the given symmetric matrix

$$
A=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right) \text { (page 410, Problem 15) }
$$

5) Use Theorem 8.29 to find values of a and b so that the given matrix is orthogonal

$$
A=\left(\begin{array}{ll}
3 / 5 & a \\
4 / 5 & b
\end{array}\right) \quad \text { (page 410, Problem 19) }
$$

6) (page 410, Problem 21)
a) Verify that

$$
K_{1}=\left(\begin{array}{c}
4 \\
1 \\
-1
\end{array}\right), \quad K_{2}=\left(\begin{array}{l}
1 \\
0 \\
4
\end{array}\right) \text {, and } K_{3}=\left(\begin{array}{c}
1 \\
-4 \\
0
\end{array}\right)
$$

are eigenvectors for the symmetric matrix

$$
A=\left(\begin{array}{ccc}
7 & 4 & -4 \\
4 & -8 & -1 \\
-4 & -1 & -8
\end{array}\right)
$$

corresponding to the eigenvalues $\lambda_{1}=9, \lambda_{2}=\lambda_{3}=-9 \quad$, respectively
b) Find a set of three mutually orthogonal eigenvectors for the matrix A in part a)

