HOMEWORK \#1s (Chapter 1 Review Exercises)

1) $y=c_{1} e^{x}+c_{2} x e^{x} \quad$ (Problem 5.)

Compute y^{\prime} and $y^{\prime \prime}$ and then combine these results as a linear second-order differential equation that is free of the symbols c_{1} and c_{2} and has the form $F\left(y, y^{\prime}, y^{\prime \prime}\right)=0$. The symbols c_{1} and c_{2} represent constants.

ANS $y^{\prime}=c_{1} e^{x}+c_{2} x e^{x}+c_{2} e^{x} \quad ; \quad y^{\prime \prime}=c_{1} e^{x}+c_{2} x e^{x}+2 c_{2} e^{x} ;$
$y^{\prime \prime}+y=2\left(c_{1} e^{x}+c_{2} x e^{x}\right)+2 c_{2} e^{x}=2\left(c_{1} e^{x}+c_{2} x e^{x}+c_{2} e^{x}\right)=2 y^{\prime} ;$
$y^{\prime \prime}-2 y^{\prime}+y=0$

In Problems 2)~4), match each of the given differential equations with one or more of the solutions:
(a) $y=0$
(b) $y=2$
(c) $y=2 x$
(d) $y=2 x^{2}$
2) $x y^{\prime}=2 y \quad$ (Problem 7.)

ANS a, d
3) $y^{\prime}=2 y-4 \quad$ (Problem 9.)

ANS b
4) $y^{\prime \prime}+9 y=18 \quad$ (Problem 11.)

ANS b
5) What is the slope of the tangent line to the graph of the solution $y^{\prime}=6 \sqrt{y}+5 x^{3}$ that through $(-1,4)$? (Problem 20.)

ANS The slope of the tangent line is $\left.y^{\prime}\right|_{(-1,4)}=6 \sqrt{4}+5(-1)^{3}=7$
6) Verify that the indicated function is a particular solution of the given differential equation. Given an interval of definition \boldsymbol{I} for the solution.

$$
x^{2} y^{\prime \prime}+x y^{\prime}+y=0 ; \quad y=\sin (\ln x)
$$

ANS Differentiating $y=\sin (\ln x)$ we obtain $y^{\prime}=\cos (\ln x) / x$ and

$$
y^{\prime \prime}=-[\sin (\ln x)+\cos (\ln x)] / x^{2} .
$$

Then $x^{2} y^{\prime \prime}+x y^{\prime}+y=x^{2}\left(-\frac{\sin (\ln x)+\cos (\ln x)}{x^{2}}\right)+x \frac{\cos (\ln x)}{x}+\sin (\ln x)=0$
Then interval of definition is $x>0$

