HOMEWORK \#4s (Chapter 3 Exercises--- Preliminary Theory, Reduction of Order, Homogeneous Linear Equations with Constant Coefficients)

Consider 1), 2), determine whether the given set of function is linearly dependent or linearly independent on the interval $(-\infty, \infty)$.

1) $f_{1}(x)=x, f_{2}(x)=x^{2}, f_{3}(x)=4 x-3 x^{2} \quad$ (page 113, Problem 15)

ANS Since $(-4) x+(3) x^{2}+(1)\left(4 x-3 x^{2}\right)=0$ the functions are linearly dependent.
2) $f_{1}(x)=1+x, f_{2}(x)=x, f_{3}(x)=x^{2} \quad$ (page 113, Problem 21)

ANS The functions are linearly independent since $W\left(1+x, x, x^{2}\right)=\left|\begin{array}{ccc}1+x & x & x^{2} \\ 1 & 1 & 2 x \\ 0 & 0 & 2\end{array}\right|=2 \neq 0$.
3) Verify that the given function form a fundamental set of the differential equation on the indicated interval. Form the general solution. $x^{2} y^{\prime \prime}-6 x y^{\prime}+12 y=0 ; x^{3}, x^{4},(0, \infty)$ (page113, problem 27)
ANS The functions satisfy the differential equation and are linearly independent since $W\left(x^{3}, x^{4}\right)=x^{6} \neq 0$, for $0<x<\infty$. The general solution is $y=c_{1} x^{3}+c_{2} x^{4}$.

Consider 4)~ 5), the indicated function y_{1} is a solution of the given equation. Use reduction of order to find a second solution y_{2}.
4) $9 y^{\prime \prime}-12 y^{\prime}+4 y=0 ; y_{1}=e^{2 x / 3} \quad($ page 116, Problem 7)

ANS Define $y=u(x) e^{2 x / 3}$ so $y^{\prime}=\frac{2}{3} e^{2 x / 3} u+e^{2 x / 3} u^{\prime}, y^{\prime \prime}=e^{2 x / 3} u^{\prime \prime}+\frac{4}{3} e^{2 x / 3} u^{\prime}+\frac{4}{9} e^{2 x / 3} u$ and $9 y^{\prime \prime}-12 y^{\prime}+4 y=9 e^{2 x / 3} u^{\prime \prime}=0$. Therefore $u^{\prime \prime}=0$ and $u=c_{1} x+c_{2}$. Taking $c_{1}=1$ and $c_{2}=0$ we see that a second solution is $y_{2}=x e^{2 x / 3}$.
5) $x^{2} y^{\prime \prime}-7 x y^{\prime}+16 y=0 ; \quad y_{1}=x^{4} \quad($ page 116, Problem 9)

ANS Identifying $P(x)=-7 / x$ we have $y_{2}=x^{4} \int \frac{e^{-\int-(7 / x) d x}}{x^{8}} d x=x^{4} \int \frac{1}{x} d x=x^{4} \ln |x|$.A second solution is $y_{2}=x^{4} \ln |x|$.

Consider 6)~ 7), find the general solution of the given second-order differential equation.
6) $y^{\prime \prime}-y^{\prime}-6 y=0$
(page 122, Problem 3)
ANS From $m^{2}-m-6=0$ we obtain $m=3$ and $m=-2$ so that $y=c_{1} e^{3 x}+c_{2} e^{-2 x}$.
7) $y^{\prime \prime}+8 y^{\prime}+16 y=0$
(page 122, Problem 5)
ANS From $m^{2}+8 m+16=0$ we obtain $m=-4$ and $m=-4$ so that $y=c_{1} e^{-4 x}+c_{2} x e^{-4 x}$.

