1) Rewrite the given expression as a single power series

$$
\sum_{n=1}^{\infty} 2 n c_{n} x^{n-1}+\sum_{n=0}^{\infty} 6 c_{n} x^{n+1} \quad \text { (page 246, Problem 9) }
$$

2) Verify by direct substitution that the given power series is a particular solution of the indicated differential equations.

$$
y=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^{n} \quad(x+1) y^{\prime \prime}+y^{\prime}=0 \quad \text { (page 246, Problem 11) }
$$

3) Find two power series solutions of the given differential equation about the ordinary point $x=0$
$y^{\prime \prime}-2 x y^{\prime}+y=0$ (page 246, Problem 15)
4) Find two power series solutions of the given differential equation about the ordinary point $x=0$
$(x-1) y^{\prime \prime}+y^{\prime}=0 \quad$ (page 246, Problem 19)
5) Use the power series method to solve the given initial-value problem.
$(x-1) y^{\prime \prime}-x y^{\prime}+y=0, y(0)=-2, \quad y^{\prime}(0)=6 \quad$ (page 246, Problem 25)
6) Use the power series method to solve the given initial-value problem.

$$
y^{\prime \prime}-2 x y^{\prime}+8 y=0, \quad y(0)=3, \quad y^{\prime}(0)=0 \quad \text { (page 246, Problem 27) }
$$

