Recall:

Linear: A differential equation is called linear if there are no multiplications among
dependent variables and their derivatives. In other words, all coefficients are functions of
independent variables.

Definition: Linear Equation
A first-order differential equation of the form
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Is said to be a linear equation.

When g(x) = 0 the equation is called homogeneous, when otherwise the the DE is called
nonhomogeneous.
The standard form of a linear first-order DE is
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We seek a solution of equation (*) on an interval | for which both function p(x) and f(x)
are continuous.

We attempt to find an integrating factor u(x) such that
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Thus, we obtain the general solution of this DE,
dy
dx

y(x) =yn(x) + yp(x) with

yh(x) corresponding to the homogeneous version of the standard form (i.e. f(x) = 0), and with

yp(X) being a particular solution of the nonhomogeneous form (i.e. f(x) # 0) of the DE.
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Solving a linear first-order equation:
1) Recognize a linear first-order equation
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2) Reform it in the standard form
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3) Find an integrating factor
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4) Rewrite the linear equation as
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Bernoulli's differential equation:
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where n is any real number.
For n=0
> dy => linear equation
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For n=1
> dy => linear equation (or separable equation)
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The Riccati Equation:
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For P(x)=0=> Bernoulli's Equation with n=2=>u=y"? —=y :%
For P(x)=0

=>Let y=yp+l with y,(x) agiven particular solution.
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Linear Differential Equations

Differential Equation

Linear differential equation:

dy

- p(x) y=f(x)

Bernoulli's differential equation:

d
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Ricatti's differential equation:
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dx

which is the Bernoulli's differential equation

with n=2 and a non-homogeneous term P(x) .

The table is revised from eFunda
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General Solution/Simplifying
Method
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where ol PO is the integrating factor.

Let u=y™"
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which is a linear differential equation.
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where y,(x) is the particular solution.
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