
Recall:  
Linear: A differential equation is called linear if there are no multiplications among 
dependent variables and their derivatives. In other words, all coefficients are functions of 
independent variables. 
 
Definition: Linear Equation 
A first-order differential equation of the form  
 
 
is said to be a linear equation. 
 
When g(x) = 0 the equation is called homogeneous, when otherwise the the DE is called 
nonhomogeneous. 
The standard form of a linear first-order DE is 
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We seek a solution of equation (*) on an interval I for which both function  )(xp  and  )(xf    
are continuous. 
 
We attempt to find an integrating factor )(xμ  such that 
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Thus, we obtain the general solution of this DE,  
 
 
y(x) =yh(x) + yp(x) with  
yh(x) corresponding to the homogeneous version of the standard form (i.e. f(x) = 0), and with 
yp(x) being a particular solution of the nonhomogeneous form  (i.e. f(x) ≠ 0) of the DE. 
 
Solving a linear first-order equation: 
1) Recognize a linear first-order equation 
 
 
2) Reform it in the standard form 
 
    
 
3) Find an integrating factor  
    
 
4)  Rewrite the linear equation as 
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Bernoulli's differential equation: 
 
 
where n is any real number. 
For 0=n  

                      linear equation 
   
 
For 1=n  

                      linear equation (or separable equation) 
 
 
For 0≠n  and 1≠n  
Let nyu −= 1  
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                           linear in u and x. 
 
 
 
 
The Riccati Equation: 
 
 
 

For 0)( =xP  Bernoulli's Equation with 2=n
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Linear Differential Equations 

 

Differential Equation 
General Solution/Simplifying 

Method 

Linear differential equation: 

 

 

 

 

where          is the integrating factor. 

 

Bernoulli's differential equation: 

 

Let nyu −= 1  

 

 

which is a linear differential equation. 

 

Ricatti's differential equation: 

 

 

which is the Bernoulli's differential equation 

with n=2 and a non-homogeneous term )(xP . 
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where )(xy p  is the particular solution. 
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The table is revised from eFunda  

 
EX: 
1) Ans:  
 
2) Ans:  
 
3)              Ans:  
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