Recall:

Linear: A differential equation is called linear if there are no multiplications among dependent variables and their derivatives. In other words, all coefficients are functions of independent variables.

Definition: Linear Equation

A first-order differential equation of the form

$$
a_{1}(x) \frac{d y}{d x}+a_{0}(x) \quad y=g(x)
$$

is said to be a linear equation.

When $\mathrm{g}(\mathrm{x})=0$ the equation is called homogeneous, when otherwise the the DE is called nonhomogeneous.
The standard form of a linear first-order DE is

$$
\begin{equation*}
a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) \rightarrow \frac{d y}{d x}+p(x) \quad y=f(x) \tag{*}
\end{equation*}
$$

We seek a solution of equation (*) on an interval I for which both function $\quad p(x)$ and $f(x)$ are continuous.

We attempt to find an integrating factor $\mu(x)$ such that

$$
\begin{aligned}
& \mu\left(y^{\prime}+p(x) y\right)=\mu f(x) \\
& \rightarrow \quad(\mu y)^{\prime}=\mu f(x) \quad<==\quad(\mu y)^{\prime}=\mu y^{\prime}+\mu^{\prime} y=\mu y^{\prime}+\mu p(x) y \\
& \mu^{\prime}=\mu p(x) \\
& \frac{d \mu}{\mu}=p(x) d x \\
& \ln |\mu|=\int p(x) d x+C_{1} \\
& |\mu|=e^{\int p(x) d x+C_{1}} \\
& \mu= \pm e^{C_{1}} e^{\int p(x) d x}=C_{2} e^{\int p(x) d x}
\end{aligned}
$$

$\rightarrow \quad \frac{d(\mu y)}{d x}=\mu f(x)$

$$
\rightarrow \quad \int d(\mu y)=\int \mu f(x) d x+C_{3}
$$

$$
\begin{aligned}
& \rightarrow \mu y=\int \mu f(x) d x+C_{3} \\
& \rightarrow y=\mu^{-1} \int \mu f(x) d x+C_{3} \mu^{-1} \\
& \rightarrow y=\frac{1}{C_{2}} e^{\int p(x) d x} \int C_{2} e^{\int p(x) d x} f(x) d x+C_{3} \frac{1}{C_{2}} e^{-\int p(x) d x} \\
& \rightarrow y=e^{\int p(x) d x} \int e^{\int p(x) d x} f(x) d x+C e^{-\int p(x) d x}
\end{aligned}
$$

Thus, we obtain the general solution of this DE,

$$
\begin{gathered}
\frac{d y}{d x}+p(x) y=f(x) \\
y(\mathrm{x})=\mathrm{yh}(\mathrm{x})+\mathrm{yp}_{\mathrm{p}}(\mathrm{x}) \text { with }
\end{gathered}
$$

$\mathrm{yh}(\mathrm{x})$ corresponding to the homogeneous version of the standard form (i.e. $\mathrm{f}(\mathrm{x})=0$), and with $y_{p}(x)$ being a particular solution of the nonhomogeneous form (i.e. $\left.f(x) \neq 0\right)$ of the DE.

Solving a linear first-order equation:

1) Recognize a linear first-order equation

$$
a_{1}(x) \frac{d y}{d x}+a_{0}(x) \quad y=g(x)
$$

2) Reform it in the standard form

$$
\frac{d y}{d x}+p(x) y=f(x)
$$

3) Find an integrating factor

$$
\mu=e^{\int p(x) d x}
$$

4) Rewrite the linear equation as
$\frac{d(\mu y)}{d x}=\mu f(x)$

Or

$$
y=e^{\int p(x) d x} \int e^{\int p(x) d x} f(x) d x+C e^{-\int p(x) d x}
$$

Bernoulli's differential equation:

$$
\frac{d y}{d x}+p(x) \quad y=f(x) y^{n}
$$

where n is any real number.
For $n=0$
$\rightarrow \quad \frac{d y}{d x}+p(x) \quad y=f(x) \quad \rightarrow$ linear equation

For $n=1$
$\Rightarrow \quad \frac{d y}{d x}+p(x) y=f(x) y \Rightarrow$ linear equation (or separable equation)

For $n \neq 0$ and $n \neq 1$
Let $u=y^{1-n}$
$\rightarrow \frac{d u}{d x}=(1-n) y^{-n} \frac{d y}{d x}$
$\rightarrow(1-n) y^{-n}\left(\frac{d y}{d x}+p(x) y\right)=(1-n) y^{-n}\left(f(x) y^{n}\right)$
$\rightarrow(1-n) y^{-n} \frac{d y}{d x}+p(x)(1-n) y^{1-n}=(1-n) f(x)$
$\rightarrow \frac{d u}{d x}+p(x)(1-n) u=(1-n) f(x) \quad$ linear in \boldsymbol{u} and \boldsymbol{x}.

The Riccati Equation:

$$
\frac{d y}{d x}=P(x)+Q(x) y+R(x) y^{2}
$$

For $P(x)=0 \rightarrow$ Bernoulli's Equation with $n=2 \boldsymbol{\rightarrow} u=y^{1-2} \Rightarrow \Rightarrow y=\frac{1}{u}$
For $P(x) \neq 0$
\rightarrow Let $y=y_{p}+\frac{1}{u}$ with $y_{p}(x)$ a given particular solution.
$\rightarrow \frac{d y}{d x}=\frac{d y_{p}}{d x}-\frac{1}{u^{2}} \frac{d u}{d x}$
$\rightarrow \frac{d y_{p}}{d x}-\frac{1}{u^{2}} \frac{d u}{d x}=P(x)+Q(x)\left[y_{p}+\frac{1}{u}\right]+R(x)\left[y_{p}+\frac{1}{u}\right]^{2}$
$\rightarrow \frac{d y_{p}}{d x}-\frac{1}{u^{2}} \frac{d u}{d x}=P(x)+Q(x) y_{p}+Q(x) \frac{1}{u}+R(x) y_{p}{ }^{2}+2 R(x) \quad y_{p} \frac{1}{u}+R(x) \frac{1}{u^{2}}$
$\rightarrow-\frac{1}{u^{2}} \frac{d u}{d x}=\left[Q(x) y_{p}+R(x) y_{p}^{2}+P(x)-\frac{d y_{p}}{d x}\right]+\left(Q(x)+2 R(x) y_{p}\right) \frac{1}{u}+R(x) \frac{1}{u^{2}}$
Since $y_{p}(x)$ is the particular solution $\rightarrow \frac{d y_{p}}{d x}=P(x)+Q(x) y_{p}+R(x) y_{p}{ }^{2}$
$\rightarrow-\frac{1}{u^{2}} \frac{d u}{d x}=\left(Q(x)+2 R(x) y_{p}\right) \frac{1}{u}+R(x) \frac{1}{u^{2}}$
$\rightarrow \frac{d u}{d x}=-\left(Q(x)+2 R(x) \quad y_{p}\right) u-R(x)$
$\rightarrow \frac{d u}{d x}+\left(Q(x)+2 R(x) \quad y_{p}\right) u=-R(x) \quad$ linear in \boldsymbol{u} and \boldsymbol{x}.

Linear Differential Equations

Differential Equation

General Solution/ Simplifying
 Method

Linear differential equation:

$$
\frac{d y}{d x}+p(x) y=f(x)
$$

$y=e^{\int p(x) d x} \int e^{\int p(x) d x} f(x) d x+C e^{-\int p(x) d x}$
where $e^{\int p(x) d x}$ is the integrating factor.

Bernoulli's differential equation:

$$
\frac{d y}{d x}+p(x) \quad y=f(x) y^{n}
$$

Let $u=y^{1-n}$
$\Rightarrow \quad \frac{d u}{d x}+p(x)(1-n) u=(1-n) f(x)$
which is a linear differential equation.

Ricatti's differential equation:

$$
\frac{d y}{d x}=P(x)+Q(x) \quad y+R(x) y^{2}
$$

which is the Bernoulli's differential equation with $\mathrm{n}=2$ and a non-homogeneous term $P(x)$.

