Review Problems for Final Exam

Jan. 2006

1) For the given matrix $A=\left(\begin{array}{lll}2 & 4 & 7 \\ 6 & 0 & 3 \\ 1 & 5 & 3\end{array}\right)$
(1) what is the size of the matrix A ?
(2) is it a square matrix of order $\mathbf{3}$?
(3) is it a symmetrix matrix ?
(4) write out all the main diagonal entries ?
(5) calculate the minor determinant M_{12}
(6) calculate the cofactor of a_{12}
(7) calculate det A
(8) write out the transpose of the matrix A
(9) write out the adjoint of the matrix A
(10) find the inverse of the matrix A
(11) is the matrix A nonsingular (or invertible)? why ?
(12) what is the maximum number of independent column vectors ?
(13) what is the maximum number of independent row vectors ?
(14) is the rank of the matrix A equal to 3 ? why ?
(15) does the matrix A satisfy Cayley-Halmilton theory? why?
2) For a given matrix $A=\left(\begin{array}{ccc}1 & 1 & -2 \\ -1 & 2 & 1 \\ 0 & 1 & -1\end{array}\right)$
(1) find the eigenvalues and eigenvectors
(2) compute $A^{m} ; m=10$ by using Cayley-Halmilton theory
(3) compute $A^{m} ; m=10$ by diagonalizing the matrix A (page 426, Problem 37)
(4) you should also try $\quad A=\left(\begin{array}{cc}7 & 3 \\ -3 & 1\end{array}\right) ; \quad A=\left(\begin{array}{ccc}-2 & 2 & -1 \\ 2 & 1 & -2 \\ -3 & -6 & 0\end{array}\right)$
3) For the given matrix $A=\left(\begin{array}{ccc}0 & -1 & 0 \\ -1 & -1 & 1 \\ 0 & 1 & 0\end{array}\right)$ (example 1, page 406)
(1) is it a symmetric matrix with real entries ?
(2) find the eigenvalues, are all the eigenvalues real ?
(3) find the eigenvectors, are the eigenvectors corresponding to distinct eigenvalues orthogonal ?
(4) what is a orthogonal matrix ?
(5) is matrix A orthogonally diagonalizable ?; that is, there exists an orthogonal matrix P such that $A=P D P^{T}=P D P^{-1}$ or $P^{-1} A P=P^{T} A P=D$ with D a diagonal matrix.
4) Solve the diagonalization problem for $A=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$
5) Is the given matrix $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ diagonalizable ?
6) Show that the matrices $A=\left(\begin{array}{ccc}3 & -1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -5\end{array}\right)$ and $B=\left(\begin{array}{ccc}0 & -3 & -3 \\ -3 & 0 & -3 \\ -3 & -3 & 0\end{array}\right)$
both have 3 as an eigenvalue of multiplicity 2 . Show that A is not diagonalizable, but B is diagonalizable.
7) For the given matrix $A=\left(\begin{array}{ccc}7 & 4 & -4 \\ 4 & -8 & -1 \\ -4 & -1 & -8\end{array}\right)$ (Remarks, page 409)
(1) find the eigenvalues
(2) find a set of three mutually orthogonal eigenvectors
8) Problem 31, Problem33 (page 426)
9) Problem 35 (page 426)
