1, y'' - 4y = 0; y(0) = 1, y'(0) = 0 $y_1(x) = \cosh(2x)$, $y_2(x) = \sinh(2x)$ (a) verify that y_1 and y_2 are solution of the differential equation (b) show that their Wronskian is not zero

2, Verify that the given function is a solution of the differential, find a second solution by reduction of order, and finally write the general solution

$$y'' - \frac{1}{x} y' - \frac{8}{x^2} y = 0$$
; $y_1(x) = x^4$ for $x > 0$

3, Solve the initial value problem
y'' + y' - 12 y = 0; y (2) = 0, y' (2) = 1

- 4, Find a second order differential equation having the function as general solution $c_1 e^{-3x} \cos (2x) + c_2 e^{-3x} \sin (2x)$
- 5, Solve the initial value problem
- (a) $x^2 y'' + 5 x y'' + 20 y = 0$; y(-1) = 3, y'(-1) = 2(b) $x^2 y'' + x y'' - 4 y = 0$; y(1) = 7, y'(1) = -3