$1, y^{\prime \prime}-4 y=0 ; y(0)=1, y^{\prime}(0)=0 y_{1}(x)=\cosh (2 x), y_{2}(x)=\sinh (2 x)$
(a) verify that y_{1} and y_{2} are solution of the differential equation
(b) show that their Wronskian is not zero

2, Verify that the given function is a solution of the differential, find a second solution by reduction of order, and finally write the general solution $y^{\prime \prime}-\frac{1}{x} y^{\prime}-\frac{8}{x^{2}} y=0 ; y_{1}(x)=x^{4}$ for $x>0$

3, Solve the initial value problem

$$
y^{\prime} '+y^{\prime}-12 y=0 ; y(2)=0, y^{\prime}(2)=1
$$

4, Find a second - order differential equation having the function as general solution $c_{1} e^{-3 x} \cos (2 x)+c_{2} e^{-3 x} \sin (2 x)$

5, Solve the initial value problem
(a) $x^{2} y^{\prime \prime}+5 x y^{\prime '}+20 y=0 ; y(-1)=3, y^{\prime}(-1)=2$
(b) $x^{2} y^{\prime '}+x y^{\prime} '-4 y=0 ; y(1)=7, y^{\prime}(1)=-3$

