1, Let $y(t)$ be the solution of $y^{\prime \prime}+\omega_{0} y=\left(\frac{A}{m}\right) \cos [\omega t]$,
with $y(0)=y^{\prime}(0)=0$. Assuming that $\omega \neq \omega_{0}$,
find $\operatorname{Lim}_{\omega \rightarrow \omega_{\theta}} y(t)$. How does this limit compare with the solution of $y^{\prime \prime}+\omega_{\theta} y=\left(\frac{A}{m}\right) \cos \left[\omega_{\theta} t\right]$, withy (0) $=y^{\prime}(0)=0$
2, Find the general solution of the differential equation of the initial value problem. $x^{2} y^{\prime \prime}-x y^{\prime}-2 y=x^{3}+4 \ln [x] ; y(1)=9, y^{\prime}(1)=7$
3, The initial value problem can be solved in closed form using methods from Chapters 1. Find this solution and expand it in a Maclaurin series. Then find the Maclaurin series solution using methods of section4 .1. The two series should agree.

$$
y^{\prime}+y=2 ; y(0)=-1
$$

4, Find the recurrence relation and use it to generate the
first five terms of the Maclaurin series of the general solution.

$$
y^{\prime}+x y=\cos [x]
$$

