1, Using Theorem 7.10 to determine wether the matrix is nonsingular. If it is, use Theorem 7.11 to find its inverse.
$\left(\begin{array}{lll}0 & -4 & 3 \\ 2 & -1 & 6 \\ 1 & -1 & 7\end{array}\right)$
2, Compute the indicated power of the matrix, using the idea of Porblem 14.
$A=\left(\begin{array}{cc}0 & -2 \\ 1 & 0\end{array}\right) ; A^{43}$
3, Find the eigenvalues of the matrix and for each eigenvalue a corresponding eigenvector. Check that eigenvectors associated with distinct eigenvalues are orthogonal. Find an orthogonal matrix that diagonalizes the Matrix.
(1) $\left(\begin{array}{ll}6 & 1 \\ 1 & 4\end{array}\right)$
(2) $\left(\begin{array}{lll}5 & 0 & 2 \\ 0 & 0 & 0 \\ 2 & 0 & 0\end{array}\right)$

