國立台灣海洋大學 2005 河工系工程數學（二）第二次作業題目

13.5

2．Let $f(x)=|x|$ for $-1 \leq x \leq 1$ ．
（a）Write the Fourier series for $f(x)$ on $[-1,1]$ ．
（b）Show that this series can be differentiated term－by－term to yield the Fouries expansion of $f^{\prime}(x)$ on $[-1,1]$ ．
（c）Determine $f^{\prime}(x)$ and write its Fourier series on［－1，1］．Compare this series with that obtained in（b）．

13.6

Find the phase angle form of the Fourier series of the function．
12.

15．The RMS（root mean square）value of a function f over an interval［a，b］is defind to be $R M S(f)=\sqrt{\frac{\int_{a}^{b}[f(x)]^{2} d x}{b-a}}$ ．If f is periodic，this quantity is evaluated over an interval of lengh equal to the fundamental period of f ． Determine RMS $(E \sin (\omega x))$ ，with E and ω positive constants．

13.7

Write the complex Fourier series of f ，Determine what this series converges to，and plot some points of the frequency spectrum．Keep in mind that in specifying a function of period p ，it is sufficient to define $f(p)$ on any interval of length p ．
5．f has period 4 and $f(x)=\left\{\begin{array}{ccc}-1 & \text { for } & 0 \leq x<2 \\ 2 & \text { for } & 2 \leq x<4\end{array}\right.$
12．Plot the phase spectrum of the periodic function of Problem 5.

