
海洋大學河海工程學系九十四學年度 第二學期 □小考 考試命題紙

考試科目	開課系級	考試日期	印製份數	答案紙	命題教師	備	註
工程數學二	<u> </u>	4月14日	111	■ 需	陳桂鴻 呂學育	第一次	大考

1.
$$\vec{F} = \frac{-y}{x^2 + y^2} \vec{i} + \frac{x}{x^2 + y^2} \vec{j}$$
; Evaluate $\oint_C \vec{F} dr$

- (a)C is shown as Fig1(a). (Hint: Using direct integral) (7%)
- (b)C is shown as Fig1(b). (Hint: Using Green's theorem) (7%)
- (d) C is shown as Fig1(c). (Hint: Using Green's theorem) (6%)

- **2.** $\vec{F} = y^3 \vec{i} + -x^3 \vec{j} + z^3 \vec{k}$; C is the trace of the cylinder $x^2 + y^2 = 1$ in the plane x + y + z = 1.
- (a) Show that the force is conservative or nonconservative. (5%)
- (b) Use Stokes's theorem to evaluate $\oint_C \vec{F} dr$. (15%)
- **3.** The given vector field $\vec{F}(x, y, z) = (x\vec{i} + y\vec{j} + z\vec{k})/(x^2 + y^2 + z^2)$, S is the region bounded by the ellipsoid $x^2/a^2 + y^2/b^2 + z^2/c^2 = 1$.
- (a). Find $\nabla \cdot \vec{F}, \nabla \times \vec{F}$. (5%)
- (b). Find the normal vector \vec{n} of S. (5%)
- (c). Use the divergence theorem to find the outward flux $\iint_S (\vec{F} \cdot \vec{n}) dS$ of \vec{F} . (10%)
- **4.** Suppose $\vec{r}(t) = t^2 \vec{i} + (t^3 2t) \vec{j} + (t^2 5t) \vec{k}$ is the position vector of a moving particle. What are its speed, velocity, acceleration, curvature and tangent line at the point (0,0,0)? (15 scores)
- **5.** If S is the portion of the plane x + 2y + 3z = 6 in the first octant. For $\vec{F} = y\vec{i} + z\vec{j} + x\vec{k}$
 - (1) find the area of S (5 scores)
 - (2) find the upper unit normal of S (5 scores)
 - (3) use Stokes' theorem to evaluate $\oint_C \vec{F} \cdot d\vec{r}$, where the curve C is the boundary of S and C is

oriented counterclockwise as viewed from above. (10 scores)

6. If S is the surface of the region bounded by $x^2 + y^2 = 4$, $z = \sqrt{16 - x^2 - y^2}$, z = 0.

$$\vec{F} = -y^3 \vec{i} - x^3 \vec{j} + z^3 \vec{k}$$

- (1) find the volume of the solid bounded by $x^2 + y^2 = 4$, $z = \sqrt{16 x^2 y^2}$, z = 0. (10 scores)
- (2) use the divergence theorem to find the outward flux $\iint_{S} (\vec{F} \cdot \vec{n}) dS$ (15 scores)