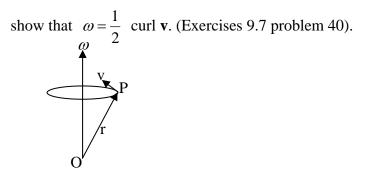
HOMEWORK #1 (Chapter 9 Vector Calculus)

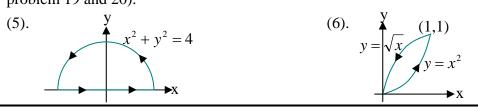
(1). Suppose $\nabla f(a,b) = 4i+3j$. Find a unit vector **u** so that: (Exercises 9.5 problem 33).


- (a). $D_{u}f(a,b) = 0$.
- (b). $D_{\mu}f(a,b)$ is a maximum.
- (c). $D_u f(a,b)$ is a minimum.

(2). Let r = xi + yj + zk be the position vector of a mass m_1 and let the mass m_2 be

located at the origin. If the force of gravitational attraction is $F = -\frac{Gm_1m_2}{\|r\|^3}r$, verify that curl

F = 0 and div F = 0, $r \neq 0$. (Exercises 9.7 problem 39).


(3).Suppose a body rotates with a constant angular velocity ω about an axis. If **r** is the position vector of a point **P** on the body measured form the origin, then the linear velocity vector **v** of rotation is $v = \omega \times r$. See Figure. If r = xi + yj + zk and $\omega = \omega_1 i + \omega_2 j + \omega_3 k$,

In problem 4, Find the length of the curve traced by the given vector function on the indicated interval. (Exercises 9.1 problem 44).

(4).
$$r(t) = 3t i + \sqrt{3}t^2 j + \frac{2}{3}t^3 k; \quad 0 \le t \le 1.$$

In problem 5-6, evaluate $\oint_C (x^2 + y^2) dx - 2xy dy$ on the given closed curve C. (Exercises 9.8 problem 19 and 20).

國立台灣海洋大學 河海工程學系 工程數學(二) J. H. Kao HOMEWORK-1.doc 2006/3/14