HOMEWORK #2 (Chapter 9 Vector Calculus)

(1). In this problem, find the work done by the force $F(x, y) = (2x + e^{-y})i + (4y - xe^{-y})j$ along the indicated curve. (Exercises 9.9 problem 17).

(2). The inverse square law of gravitational attraction between two masses m_1 and m_2 is given by $F = \frac{-Gm_1m_2r}{\|r\|^3}$, where r = xi + yj + zk. Show the F is conservative. Find a

potential function for F. (Exercises 9.9 problem 27).

In problem (3) and (4), evaluate the given line integral where $c = c_1 \cup c_2$ is the boundary of the shaded region R.

(3). $\oint_c (4x^2 - y^3) dx + (x^3 + y^2) dy$. $c_1 : x^2 + y^2 = 4$, $c_2 : x^2 + y^2 = 1$ (Exercises 9.9 problem 23).

(4). $\oint_c (\cos x^2 - y) dx + (\sqrt{y^3 + 1}) dy$. $c_2 : 4x^2 + y^2 = 16$ (Exercises 9.9 problem 24)

(5). Find the work done by the force F = -y i + x j acting along the cardioid $r = 1 + \cos \theta$.

(Exercises 9.9 problem 33)

