HOMEWORK \＃2（Chapter 9 Vector Calculus）

（1）．In this problem，find the work done by the force $F(x, y)=\left(2 x+e^{-y}\right) \underset{\sim}{i}+\left(4 y-x e^{-y}\right) j$ along the indicated curve．（Exercises 9.9 problem 17）．

（2）．The inverse square law of gravitational attraction between two masses m_{1} and m_{2} is given by $F=\frac{-G m_{1} m_{2} r}{\|r\|^{3}}$ ，where $r=x \underset{\sim}{i}+\underset{\sim}{j}+\underset{\sim}{z}$ ．Show the F is conservative．Find a potential function for F ．（Exercises 9.9 problem 27）．

In problem（3）and（4），evaluate the given line integral where $c=c_{1} \cup c_{2}$ is the boundary of the shaded region R ．
（3）．$\oint_{c}\left(4 x^{2}-y^{3}\right) d x+\left(x^{3}+y^{2}\right) d y . c_{1}: x^{2}+y^{2}=4, c_{2}: x^{2}+y^{2}=1$（Exercises 9.9 problem 23）．

（4）．$\oint_{c}\left(\cos x^{2}-y\right) d x+\left(\sqrt{y^{3}+1}\right) d y . c_{2}: 4 x^{2}+y^{2}=16$（Exercises 9.9 problem 24）

（5）．Find the work done by the force $F=-y \underset{\sim}{i}+x \underset{\sim}{j}$ acting along the cardioid $r=1+\cos \theta$ ．
（Exercises 9.9 problem 33）

