(1). In this problem, use the divergence theorem to find the outward flux $\iint_{S} (F \cdot n) dS$ of the given vector field *F*. $F(x, y, z) = (x i + y j + z k)/(x^{2} + y^{2} + z^{2})$; *D* the region bounded by the ellipsoid $x^{2}/a^{2} + y^{2}/b^{2} + z^{2}/c^{2} = 1$ (Exercises 9.16 problem 9).

(2). The electric field at a point P(x, y, z) due to a point charge q located at the origin is given by the inverse square field $E = q \frac{r}{\|r\|^3}$, where r = xi + yj + zk. (Exercises 9.16

problem 15)

(a). Suppose *S* is a closed surface, S_a is a sphere $x^2 + y^2 + z^2 = a^2$ lying completely within *S*, and *D* is the region bounded between S and S_a . See Figure. Show that the outward flux of E for the region *D* is zero.

(b). Use the result of part (a) to prove Gauss' law: $\iint_{S} (E \cdot n) dS = 4\pi q$, that is the outward flux of the electric field E through any closed surface (for which the divergence theorem applies) containing the origin is $4\pi q$.