HOMEWORK \＃4（Chapter 9 Vector Calculus）

（1）．In this problem，use the divergence theorem to find the outward flux $\iint_{S}(F \cdot n) d S$ of the given vector field $F . F(x, y, z)=(x \underset{\sim}{i}+y \underset{\sim}{j}+z \underset{\sim}{k}) /\left(x^{2}+y^{2}+z^{2}\right) ; D$ the region bounded by the ellipsoid $x^{2} / a^{2}+y^{2} / b^{2}+z^{2} / c^{2}=1$（Exercises 9.16 problem 9）．
（2）．The electric field at a point $P(x, y, z)$ due to a point charge q located at the origin is given by the inverse square field $E=q \frac{r}{\|r\|^{3}}$ ，where $r=x \underset{\sim}{i}+\underset{\sim}{j}+z \underset{\sim}{j}$ ．（Exercises 9.16 problem 15）
（a）．Suppose S is a closed surface，S_{a} is a sphere $x^{2}+y^{2}+z^{2}=a^{2}$ lying completely within S ，and D is the region bounded between S and S_{a} ．See Figure．Show that the outward flux of E for the region D is zero．

（b）．Use the result of part（a）to prove Gauss＇law： $\iint_{S}(E \cdot n) d S=4 \pi q$ ，that is the outward flux of the electric field E through any closed surface（for which the divergence theorem applies）containing the origin is $4 \pi q$ ．

