HOMEWORK \#4 (Chapter 9 Vector Calculus)

(1). In this problem, use the divergence theorem to find the outward flux $\iint_{S}(F \cdot n) d S$ of the given vector field $F . F(x, y, z)=(x \underset{\sim}{i}+y \underset{\sim}{j}+z \underset{\sim}{k}) /\left(x^{2}+y^{2}+z^{2}\right) ; D$ the region bounded by the ellipsoid $x^{2} / a^{2}+y^{2} / b^{2}+z^{2} / c^{2}=1$ (Exercises 9.16 problem 9).

Ans: $\operatorname{divF}=\frac{1}{x^{2}+y^{2}+z^{2}}$

$$
\iint_{S} F \cdot n d S=\iiint_{D} d i v F d V=\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{a}^{b} \frac{1}{\rho^{2}} \rho^{2} \sin \phi d \rho d \phi d \theta=4 \pi(b-a)
$$

(2). The electric field at a point $P(x, y, z)$ due to a point charge q located at the origin is given by the inverse square field $E=q \frac{r}{\|r\|^{3}}$, where $r=\underset{\sim}{\underset{\sim}{i}}+\underset{\sim}{j}+z \underset{\sim}{x}$. (Exercises 9.16 problem 15)
(a). Suppose S is a closed surface, S_{a} is a sphere $x^{2}+y^{2}+z^{2}=a^{2}$ lying completely within S, and D is the region bounded between S and S_{a}. See Figure. Show that the outward flux of E for the $\mathrm{region}_{z} D$ is zero.

Ans:

$$
\operatorname{divE}=q\left[\frac{-2 x^{2}+y^{2}+z^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}}+\frac{x^{2}-2 y^{2}+z^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}}+\frac{x^{2}+y^{2}-2 z^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}}\right]=0
$$

$$
\iint_{S \cup S_{a}}(E \cdot n) d S=\iiint_{D} d i v E d V=0
$$

（b）．Use the result of part（a）to prove Gauss＇law： $\iint_{S}(E \cdot n) d S=4 \pi q$ ，that is the outward flux of the electric field E through any closed surface（for which the divergence theorem applies）containing the origin is $4 \pi q$ ．

Ans： $\iint_{S}(E \cdot n) d S+\iint_{S_{A}}(E \cdot n) d S=0$ and $\iint_{S}(E \cdot n) d S=-\iint_{S_{a}}(E \cdot n) d S$
On $S_{a},|r|=a, n=-(x \underset{\sim}{i}+y j+z \underset{\sim}{k}) / a=-r / a$ and $E \cdot n=-q / a^{2}$
$\iint_{S}(E \cdot n) d S=-\iint_{S_{a}}(E \cdot n) d S=4 \pi q$

