Complex Numbers

The complex numbers are the field Cof numbers of the form $x+i y$, where x and y are real numbers and i is the imaginary unit equal to the square root of -1 , namely $i=\sqrt{-1}$.

We can apply a single letter $Z=x+i y$ to denote a complex number. In component notation, $z=x+i y$ can be written (x, y).

Through the Euler formula, a complex number $Z=x+i y$ may be written in "polar" form $z=x+i y=r[\cos (\theta)+i \sin (\theta)]=r e^{i \theta}$ $r=|z|=|x+i y|=\sqrt{x^{2}+y^{2}}$ is the magnitude, or modulus, of $z=x+i y$ $\theta=\tan ^{-1}\left(\frac{y}{x}\right)$ is known as the argument or phase.

The plot below shows the point z, where the dashed circle represents the complex modulus $r=|z|=|x+i y|=\sqrt{x^{2}+y^{2}}$ of z and the angle θ represents its complex argument.

Given a complex number $z=a+i b$, its conjugate of is $\bar{z}=a-i b$

Complex addition
$(a+b i)+(c+d i)=(a+c)+i(b+d)$,
complex subtraction
$(a+b i)-(c+d i)=(a-c)+i(b-d)$,
complex multiplication
$(a+b i)(c+d i)=(a c-b d)+i(a d+b c)$,
and complex division
$\frac{a+b i}{c+d i}=\frac{(a c+b d)+i(b c-a d)}{c^{2}+d^{2}}$
http://mathworld.wolfram.com/ComplexNumber.html

Equality of complex numbers
$a+i b=c+i d$ if and only if $a=c \quad$ and $\quad b=d$
$e^{i \theta}=\cos \theta+i \sin \theta, e^{-i \theta}=\cos \theta-i \sin \theta$
$\rightarrow \sin \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i}, \quad \cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2}$

