1）Let $f(x)=\begin{array}{lll}1 & \text { for } & 0 \leq x \leq \pi / 2 \\ 2 & \text { for } & \pi / 2<x \leq \pi\end{array}$
（a）Find the Fourier cosine series of $f(x)$ on $[0, \pi]$
（b）Find the Fourier sine series of $f(x)$ on $[0, \quad \pi]$
（c）Plot the Fourier cosine series obtained in（a）
（d）Plot the Fourier sine series obtained in（b）
（e）Make comparisons between（a），（c）and（b），（d）（hint：convergence in the interval and at the endpoints，convergence rate，Gibbs Phenomenon，．．．．．．）

2）Let $f(x)=\begin{array}{lll}0 & \text { for } & -\pi \leq x \leq 0 \\ x & \text { for } & 0<x \leq \pi\end{array} \quad$（Section 13．5 Problem 3．）
（a）Write the Fourier series of $f(x)$ on $\left[\begin{array}{ll}-\pi, & \pi\end{array}\right]$ and show that this series converges to $f(x)$ on $(-\pi, \pi)$ ．
（b）Show that this series can be integrated term－by－term．
（c）Use the results of（a）and（b）to obtain a trigonometric series expansion for $\int_{-\pi}^{\pi} f(x) d t$ on $[-\pi, \quad \pi]$.

