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(a)Find the Fourier cosine series of )(xf  on [ ]π,0  
(b)Find the Fourier sine series of )(xf  on [ ]π,0  
(c)Plot the Fourier cosine series obtained in (a) 
(d)Plot the Fourier sine series obtained in (b) 
(e)Make comparisons between (a), (c) and (b), (d) (hint: convergence in the 

interval and at the endpoints, convergence rate, Gibbs Phenomenon,…... ) 
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π

≤<
≤≤−

= xforx
xfor

xf 0
00

)(   (Section 13.5 Problem 3.) 

(a)Write the Fourier series of )(xf on [ ]ππ ,−  and show that this series 
converges to )(xf  on ( )ππ ,− . 

(b)Show that this series can be integrated term-by-term. 
(c)Use the results of (a) and (b) to obtain a trigonometric series expansion for 

dtxf
x

)(∫−π  on [ ]ππ ,− . 
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The Fourier series of f on [ ]ππ ,−  is 
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Since f is piecewise smooth (?), the Theorem 13.2 gives us that this series 
converges to )(xf on ( )ππ ,− . 

 
(b)Since f is continuous, hence piecewise continuous, the Theorem 13.5 gives us 

that this series can be integrated term-by-term. 
 
(c)Use the results of (a) and (b) to obtain a trigonometric series expansion for 

dtxf
x

)(∫−π  on [ ]ππ ,− . 

  Now integrate the Fourier series term-by-term over [ ]x,π−  to get 
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. But this series is not 

exactly the Fourier series expansion due to the terms x
4
π  and 2
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[ ]ππ ,− . Therefore, the corresponding Fourier series for dtxf
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on [ ]ππ ,−  is ( )
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