1）Let $f(x)=\begin{array}{ccc}1 & \text { for } & 0 \leq x \leq \pi / 2 \\ 2 & \text { for } & \pi / 2<x \leq \pi\end{array} \quad$（Please refer to example 13．20）
（a）Find the Fourier cosine series of $f(x)$ on $[0, \pi]$
（b）Find the Fourier sine series of $f(x)$ on $[0, \quad \pi]$
（c）Plot the Fourier cosine series obtained in（a）
（d）Plot the Fourier sine series obtained in（b）
（e）Make comparisons between（a），（c）and（b），（d）（hint：convergence in the interval and at the endpoints，convergence rate，Gibbs Phenomenon，．．．．．．）

2）Let $f(x)=\begin{array}{lll}0 & \text { for } & -\pi \leq x \leq 0 \\ x & \text { for } & 0<x \leq \pi\end{array} \quad$（Section 13．5 Problem 3．）
（a）Write the Fourier series of $f(x)$ on $\left[\begin{array}{ll}-\pi, & \pi\end{array}\right]$ and show that this series converges to $f(x)$ on $(-\pi, \pi)$ ．
（b）Show that this series can be integrated term－by－term．
（c）Use the results of（a）and（b）to obtain a trigonometric series expansion for

$$
\int_{-\pi}^{x} f(x) d t \text { on }[-\pi, \quad \pi] .
$$

ANS

（a）$a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x=\frac{1}{\pi} \int_{0}^{\pi} x d x=\frac{\pi}{2}$

$$
\begin{aligned}
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) d x & =\frac{1}{\pi} \int_{0}^{\pi} x \cos (n x) d x \\
& \left.=\frac{1}{\pi}\left\{x \frac{\sin (n x)}{n}+\frac{\cos (n x)}{n^{2}}\right\} \right\rvert\, \pi \\
& =\frac{1}{\pi}\left\{-\frac{(-1)^{n}}{n^{2}}-\frac{1}{n^{2}}\right\}
\end{aligned}
$$

$$
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) d x=\frac{1}{\pi} \int_{0}^{\pi} x \sin (n x) d x
$$

$$
\left.=\frac{1}{\pi}\left\{-x \frac{\cos (n x)}{n}+\frac{\sin (n x)}{n^{2}}\right\} \right\rvert\, \begin{aligned}
& \pi \\
& 0
\end{aligned}
$$

$$
=-\frac{1}{n}(-1)^{n}
$$

\rightarrow The Fourier series of f on $[-\pi, \pi]$ is

$$
\frac{\pi}{4}+\sum_{n=1}^{\pi}\left[\frac{(-1)^{n}-1}{\pi n^{2}} \cos (n x)+\frac{(-1)^{n+1}}{n} \sin (n x)\right]
$$

Since f is piecewise smooth (?), the Theorem 13.2 gives us that this series converges to $f(x)$ on $(-\pi, \quad \pi)$.
(b)Since f is continuous, hence piecewise continuous, the Theorem 13.5 gives us that this series can be integrated term-by-term.
(c)Use the results of (a) and (b) to obtain a trigonometric series expansion for
$\int_{-\pi}^{x} f(x) d t$ on $[-\pi, \quad \pi]$.
Now integrate the Fourier series term-by-term over $\left[\begin{array}{ll}-\pi, & x\end{array}\right]$ to get $\frac{\pi}{4}(x+\pi)+\sum_{n=1}^{\pi}\left[\frac{(-1)^{n}-1}{\pi n^{3}} \sin (n x)+\frac{(-1)^{n}}{n^{2}} \cos (n x)-\frac{1}{n^{2}}\right]$. But this series is not exactly the Fourier series expansion due to the terms $\frac{\pi}{4} x$ and $-\sum_{n=1}^{\infty} \frac{1}{n^{2}}$. But we can obtain that $-\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$ and $x=\sum_{n=1}^{\infty} \frac{2(-1)^{n}}{n} \sin (n x)$ on $\left[\begin{array}{cc}-\pi, & \pi\end{array}\right]$. Therefore, the corresponding Fourier series for $\int_{-\pi}^{x} f(x) d t$ on $\left[\begin{array}{ll}-\pi, & \pi\end{array}\right]$ is $\frac{\pi^{2}}{12}+\sum_{n=1}^{\pi}\left\{\left[\frac{\pi(-1)^{n}}{2 n^{3}}+\frac{1}{n^{3} \pi}\left((-1)^{n}-1\right)\right] \sin (n x)+\frac{(-1)^{n}}{n^{2}} \cos (n x)\right\}$

