1）Let $f(x)=x \sin (x) \quad$ for $-\pi \leq x \leq \pi \quad$（Section 13.5 Problems 5．）
（a）Write the Fourier series for $f(x)$ on $[-\pi, \quad \pi]$
（b）Show that this series can be differentiated term－by－term and use this fact to obtain the Fourier expansion of $\sin (x)+x \cos (x)$ on $[-\pi, \quad \pi]$
（c）Write the Fourier series of $\sin (x)+x \cos (x)$ on $[-\pi, \quad \pi]$ by computation of the Fourier coefficients and compare the result with that of（b）

ANS

（a）For this problem，the period $p=2 L=2 \pi$ ．
Step1：$f(-x)=-x \sin (-x)=x \sin (x)=f(x)$ so $f(x)$ is even．
Step2：Since $f(x)$ is even and $\sin \left(\frac{n \pi x}{\pi}\right)=\sin (n x)$ is odd，$f(x) \sin (n x)$ is odd and hence

$$
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x)=0
$$

Step3：Since $f(x)$ is even and $\cos (n x)$ is even，$f(x) \cos (n x)$ is even and hence

$$
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) d x=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos (n x) d x
$$

Therefore，

$$
\begin{aligned}
& \left.\begin{array}{rl}
a_{0}=\frac{2}{\pi} \int_{0}^{\pi} x \sin (x) d x & =\frac{2}{\pi}\left\{\left.(x)(-\cos (x))\right|_{0} ^{\pi}-\int_{0}^{\pi}(1)(-\cos (x)) d x\right\} \\
= & \frac{2}{\pi}\left\{\pi \cdot(-\cos (-\pi))+\left.\sin (x)\right|_{0} ^{\pi}\right\} \\
= & \frac{2}{\pi}\{\pi\}=2 \\
\begin{array}{rl}
a_{1}=\frac{2}{\pi} \int_{0}^{\pi} x \sin (x) \cos (x) d x & =\frac{2}{\pi} \int_{0}^{\pi} x \frac{\sin (2 x)}{2} d x \\
& =\frac{2}{\pi}\left\{(x)\left(-\frac{\cos (2 x)}{4}\right)| |_{0}^{\pi}-\int_{0}^{\pi}(1)\left(-\frac{\cos (2 x)}{4}\right) d x\right\} \\
& =\frac{2}{\pi}\left\{\pi \cdot\left(-\frac{\cos (2 \pi)}{4}\right)+\left.\frac{\sin (2 x)}{8}\right|_{0} ^{\pi}\right\}=-\frac{1}{2}
\end{array}
\end{array} . \begin{array}{rl}
\end{array}\right] \\
& 0
\end{aligned}
$$

For $n \geq 2$

$$
\begin{aligned}
a_{n}=\frac{2}{\pi} \int_{0}^{\pi} x \sin (x) \cos (n x) d x & =\frac{2}{\pi} \int_{0}^{\pi} x \frac{1}{2}\{\sin (1-n) x+\sin (1+n) x\} d x \\
& =\frac{1}{\pi} \int_{0}^{\pi}\{x \sin ((1-n) x)+x \sin s((1+n) x)\} d x \\
& =\left.\frac{1}{\pi}\left\{-\frac{x \cos ((1-n) x)}{1-n}+\frac{\sin ((1-n) x)}{(1-n)^{2}}\right\}\right|_{0} ^{\pi}+ \\
& \left.\frac{1}{\pi}\left\{-\frac{x \cos ((1+n) x)}{1+n}+\frac{\sin ((1+n) x)}{(1+n)^{2}}\right\}\right|_{0} ^{\pi} \\
& =\frac{1}{\pi}\left\{-\pi \frac{\cos ((1-n) \pi)}{1-n}\right\}+\frac{1}{\pi}\left\{-\pi \frac{\cos ((1+n) \pi)}{1+n}\right\} \\
& =\frac{1}{\pi}\left\{-\pi \frac{\cos (\pi) \cos (n \pi)}{1-n}\right\}+\frac{1}{\pi}\left\{-\pi \frac{\cos (\pi) \cos (n \pi)}{1+n}\right\} \\
& =\frac{(-1)^{n}}{1-n}+\frac{(-1)^{n}}{1+n}=2 \frac{(-1)^{n+1}}{n^{2}-1}
\end{aligned}
$$

Step4: Therefore, the Fourier series is $1-\frac{1}{2} \cos (x)+2 \sum_{n=2}^{\infty} \frac{(-1)^{n+1}}{n^{2}-1} \cos (n x)$.
(b) $f(x)=x \sin (x)$ is continuous on $[-\pi, \pi]$ and $f^{\prime}(x)=\sin (x)+x \cos (x), f^{\prime \prime}(x)=\cos (x)+\cos (x)-x \sin (x)$ are all continuous on $[-\pi, \quad \pi]$, and $f(\pi)=f(-\pi)$. So the Theorem 13.6 gives us $f^{\prime}(x)=\sin (x)+x \cos (x)=\frac{1}{2} \sin (x)+2 \sum_{n=2}^{\infty} \frac{(-1)^{n}}{n^{2}-1} n \sin (n x)$ for $(-\pi, \quad \pi)$.
(c)Step1: $g(x)=\sin (x)+x \cos (x)$ on $[-\pi, \quad \pi]$
$g(-x)=\sin (-x)-x \cos (-x)=-\sin (x)-x \cos (x)=-g(x)$, so $g(x)$ is odd.

Step2: Similar to what we done in a), but with $a_{n}=0$
\rightarrow We can get the same Fourier series as term by term differentiation in b)
2) Let $f(x)=x$ for $0 \leq x<2$ and $f(x+2)=f(x)$ for all x (Section 13.6 Problem 5.) Find the phase angle form of the Fourier series of the function. Plot some points of the amplitude spectrum of the function. (hint: please refer to Example 13.28) ANS
For this problem, the period $p=2 L=2$.
$a_{0}=\int_{-1}^{1} f(x) d x=\int_{0}^{2} x d x=2$
$a_{n}=\int_{0}^{2} x \cos (n \pi x) d x=\left.\left\{x \frac{\sin (n \pi x)}{n \pi}+\frac{\cos (n \pi x)}{(n \pi)^{2}}\right\}\right|_{0} ^{2}=0$
$b_{n}=\int_{0}^{2} x \sin (n \pi x) d x=\left.\left\{-x \frac{\cos (n \pi x)}{n \pi}+\frac{\sin (n \pi x)}{(n \pi)^{2}}\right\}\right|_{0} ^{2}=-\frac{2}{n \pi}$
\rightarrow The corresponding Fourier series is $1-\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin (n \pi x)$ $c_{n}=\sqrt{a_{n}^{2}+b_{n}^{2}}=-\frac{2}{n \pi}$
$\delta_{n}=\tan ^{-1}\left(-b_{n} / a_{n}\right)=\tan ^{-1}(-\infty)=-\frac{\pi}{2}$
\rightarrow The phase angle form of the Fourier series is $1-\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \cos \left(n \pi x-\frac{\pi}{2}\right)$

The amplitude spectrum, e.g. Figure 13.37 in the textbook, of the function consists of points $\left(n \omega_{0}, c_{n} / 2\right)$ with $\omega_{0}=2 \pi / p=\pi$.
3) Let f has period 3 and $f(x)=2 x$ for $0 \leq x<3$ (Section 13.7 Problem 1.)
(a)Write the complex Fourier series of f
(b)Determine what this series converges to
(c)Plot some points of the frequency spectrum (hint: please refer to Example 13.29)

ANS

(a)For this problem, the period $p=3$.

$$
\begin{aligned}
& d_{0}=\frac{a_{0}}{2}=\frac{1}{3} \int_{-3 / 2}^{3 / 2} f(x) d x=\frac{1}{3} \int_{0}^{3} 2 x d x=3 \\
& d_{n}=\frac{1}{2}\left(a_{n}-i b_{n}\right)=\frac{1}{p} \int_{-p / 2}^{p / 2} f(x) e^{-i n \omega_{0} x} d x=\frac{1}{3} \int_{0}^{3} 2 x e^{-2 n \pi x / 3}=\frac{3}{n \pi} i
\end{aligned}
$$

The complex Fourier series of f is $3+\frac{3 i}{\pi} \sum_{n=-\infty, n \neq 0}^{\infty} \frac{1}{n} e^{2 n \pi i x / 3}$
(b)Note that the complex Fourier series of f converges to 3 if $x=0$, or $x=3$ and converges to $2 x$ if $0<x<3$
(c)As shown in Figure 13.49 of the textbook, the frequency (or amplitude) spectrum is a plot of points $\left(n \omega_{0},\left|d_{n}\right|\right)$ with $\omega_{0}=2 \pi / p=2 \pi / 3,\left|d_{0}\right|=3$, $\left|d_{n}\right|=\sqrt{(3 / n \pi)^{2}}=\frac{3}{n \pi}$.

