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Engineering Mathematics Ⅱ   Hw#3         日河工 2B 

23 March 2005 
 

 1) Let ππ ≤≤−= xforxxxf )sin()(   (Section 13.5 Problems 5.) 
(a)Write the Fourier series for )(xf  on [ ]ππ ,−  
(b)Show that this series can be differentiated term-by-term and use this fact to 

obtain the Fourier expansion of )cos()sin( xxx +  on [ ]ππ ,−  
(c)Write the Fourier series of )cos()sin( xxx +  on [ ]ππ ,−  by computation of 

the Fourier coefficients and compare the result with that of (b) 
  
ANS 
(a)For this problem, the period π22 == Lp . 

Step1: )()sin()sin()( xfxxxxxf ==−−=−  so )(xf  is even. 
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Step3: Since )(xf  is even and ( )nxcos  is even, ( )nxxf cos)(  is even and 
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For 2≥n  
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Step4: Therefore, the Fourier series is  )cos(
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(b) )sin()( xxxf =  is continuous on [ ]ππ ,−  and 

)cos()sin()(' xxxxf += , )sin()cos()cos()('' xxxxxf −+=  are all continuous 
on [ ]ππ ,− , and )()( ππ −= ff . So the Theorem 13.6 gives us  
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(c)Step1: )cos()sin()( xxxxg +=  on [ ]ππ ,−  
        )()cos()sin()cos()sin()( xgxxxxxxxg −=−−=−−−=− , so )(xg  is 

odd. 
  Step2: Similar to what we done in a), but with 0=na  

  We can get the same Fourier series as term by term differentiation in b) 
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 2) Let xxf =)(  for 20 <≤ x  and )()2( xfxf =+  for all x (Section 13.6 Problem 5.) 
Find the phase angle form of the Fourier series of the function. Plot some points of 

the amplitude spectrum of the function. (hint: please refer to Example 13.28) 
ANS 
For this problem, the period 22 == Lp . 
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The amplitude spectrum, e.g. Figure 13.37 in the textbook, of the function 
consists of points ( )2/,0 ncnω  with ππω == p/20 . 

 
3) Let f  has period 3 and xxf 2)( =  for 30 <≤ x  (Section 13.7 Problem 1.) 

(a)Write the complex Fourier series of f  
(b)Determine what this series converges to 
(c)Plot some points of the frequency spectrum 
  (hint: please refer to Example 13.29) 
 
ANS 
(a)For this problem, the period 3=p . 
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The complex Fourier series of f  is  3/2
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(b)Note that the complex Fourier series of f  converges to 3 if 3,0 == xorx  

and converges to 302 << xifx  

 
(c)As shown in Figure 13.49 of the textbook, the frequency (or amplitude) 

spectrum is a plot of points ( )ndn ,0ω  with 3/2/20 ππω == p , 30 =d , 
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