國立台灣海洋大學九十三學年度 第二學期 工程數學(二) 第二次期中考

- 1. $f(t) = H(t)e^{-at}$, where H(t) is the Heavside function, a>0.
- (1) Compute $F(\mathcal{O})$. 5%
- (2) Compute the **Fourier transform** of $e^{-a|t|}$ by using the result of (1). 7%

(Hint: a. $e^{-a|t|} = H(t)e^{-at} + H(-t)e^{at}$, b. Time reversal)

(3) $g(t) = H(t-4)e^{-2t}\sin(t-4)$, find $G(\omega)$ by using the result of (1) and the theorems of modulation and time shifting. 7%

(4)Proof $\mathcal{F}[\delta(t)]=1.$ 7%

٢

(5) Solving the y_p of $y''(t) + 3y'(t) + 2y(t) = \delta(t-5)$. 7%

(6) Solving the y_p of $y''(t) + 3y'(t) + 2y(t) = H(t)e^{-4t}$. 8%

(7) Solving the y_p of $y''(t) + 3y'(t) + 2y(t) = H(t)e^{-4t} * \delta(t)$, where * is convolution operator. 4%

2. Proof the relations of $F(\omega)$ and $A(\omega), B(\omega)$, where $F(\omega)$ is the **Fourier transform of** f(t), and $A(\omega), B(\omega)$ are the **Fourier integral coefficients** of f(t). 15%

3. Let
$$f(t) = \begin{cases} k & for & -c \le t < c \\ 0 & for & t < -c & and & t \ge c \end{cases}$$
 and c , k are positive numbers

- a) sketch the function f(t) 3 %
- b) is the function f(t) piecewise smooth 2%

c) show that $\int |f(t)| dt$ converges 5%

d) Find the Fourier integral coefficients, A_{ω} , B_{ω} , of f(t) = 12%

e) Find the Fourier integral of f(t), $\int_{0}^{\infty} \left[A_{\omega} \cos(\omega t) + B_{\omega} \sin(\omega t)\right] d\omega$ (3%) and determine what this integral converges to 5%

f) if
$$k = \frac{1}{2c}$$
 and $c \to 0$, find the Fourier integral of $f(t) = 5\%$

4. Let $f(x) = xe^{-|x|}$, $g(x) = |x|e^{-|x|}$

- a) Find the Fourier transform of f(x) = 12%
- b) Find the Fourier transform of g(x) = 13%