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Engineering Mathematics Ⅱ   QUIZ-1th         日河工 2B 

16 March 2005 
 

 
1) Let 33,4)( ≤≤−= xxf , plot the function and find its Fourier series on [ ]3,3−  

(Section 13.2 Problems 1.) 
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The Fourier series of 4)( =xf  on [ ]3,3−  is 
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Step1: )(4)( xfxf ==−  so )(xf  is even. 
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Step3: Since )(xf  is even and ⎟
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Therefore, 
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Step4: Therefore, the Fourier series is then 4. 
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2) Let 30,4)( ≤≤= xxf , plot the function and find its Fourier cosine series and Fourier 

sine series, respectively. 
(Section 13.4 Problems 1.) 
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  a) 30,4)( ≤≤= xxf , then 
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   )(xfe  is the even extension of )(xf  to [ ]3,3− . Because )(xfe  is an even 

function on [ ]3,3− , its Fourier series on [ ]3,3−  is ⎟
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Thus, 
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Therefore, the Fourier series is then 4. This function is its own Fourier cosine 
expansion converging to 4 for 0 3x≤ ≤ . 

 

b) 30,4)( ≤≤= xxf , then 
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    )(xfo  is the odd extension of )(xf  to [ ]3,3− . Because )(xfo  is an odd 

function on [ ]3,3− , its Fourier series on [ ]3,3−  is ⎟
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If n  is even (i.e. 2n)  0=nb  

If n  is odd (i.e. 2n-1)  
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Therefore, the Fourier series is then ⎟
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. Note that, it 

converges to 0 if x=0 or x=3, and to 4 for 0<x<3. 
 


