1）Let $f(x)=4,-3 \leq x \leq 3$ ，plot the function and find its Fourier series on $\left[\begin{array}{ll}-3, & 3\end{array}\right]$ （Section 13．2 Problems 1．）
（1）

（2）
The Fourier series of $f(x)=4$ on $[-3,3]$ is

$$
\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{3}\right)+b_{n} \sin \left(\frac{n \pi x}{3}\right)\right]
$$

Step1：$f(-x)=4=f(x)$ so $f(x)$ is even．
Step2：Since $f(x)$ is even and $\sin \left(\frac{n \pi x}{3}\right)$ is odd，$f(x) \sin \left(\frac{n \pi x}{3}\right)$ is odd and hence

$$
b_{n}=\frac{1}{3} \int_{-3}^{3} f(x) \sin \left(\frac{n \pi x}{3}\right)=0
$$

Step3：Since $f(x)$ is even and $\cos \left(\frac{n \pi x}{3}\right)$ is even，$f(x) \cos \left(\frac{n \pi x}{3}\right)$ is even and hence

$$
a_{n}=\frac{1}{3} \int_{-3}^{3} f(x) \cos \left(\frac{n \pi x}{3}\right) d x=\frac{2}{3} \int_{0}^{3} f(x) \cos \left(\frac{n \pi x}{3}\right) d x
$$

Therefore，

$$
a_{0}=\frac{2}{3} \int_{0}^{3} 4 d x=8, \quad a_{n}=\frac{2}{3} \int_{0}^{3} 4 \cos \left(\frac{n \pi x}{3}\right) d x=0
$$

Step4：Therefore，the Fourier series is then 4.
2) Let $f(x)=4, \quad 0 \leq x \leq 3$, plot the function and find its Fourier cosine series and Fourier sine series, respectively.
(Section 13.4 Problems 1.)
ANS
(1)

(2)
a) $f(x)=4, \quad 0 \leq x \leq 3$, then $f_{e}(x)=\left\{\begin{aligned} f(x)=4 & \text { for } 0 \leq x \leq 3 \\ f(-x)=4 & \text { for }-3 \leq x \leq 0\end{aligned}\right.$
$f_{e}(x)$ is the even extension of $f(x)$ to $[-3,3]$. Because $f_{e}(x)$ is an even function on $[-3,3]$, its Fourier series on $[-3,3]$ is $\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{3}\right)$

Thus,

$$
a_{0}=\frac{2}{3} \int_{0}^{3} 4 d x=8, \quad a_{n}=\frac{2}{3} \int_{0}^{3} 4 \cos \left(\frac{n \pi x}{3}\right) d x=0
$$

Therefore, the Fourier series is then 4 . This function is its own Fourier cosine expansion converging to 4 for $0 \leq x \leq 3$.
b) $f(x)=4, \quad 0 \leq x \leq 3$, then $f_{o}(x)=\left\{\begin{array}{cc}f(x)=4 & \text { for } 0 \leq x \leq 3 \\ -f(-x)=-4 & \text { for }-3 \leq x \leq 0\end{array}\right.$ $f_{o}(x)$ is the odd extension of $f(x)$ to $[-3,3]$. Because $f_{o}(x)$ is an odd function on $[-3,3]$, its Fourier series on $[-3,3]$ is $\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{3}\right)$

Thus,

$$
b_{n}=\frac{1}{3} \int_{-3}^{3} f_{o}(x) \sin \left(\frac{n \pi x}{3}\right)=\frac{2}{3} \int_{0}^{3} 4 \sin \left(\frac{n \pi x}{3}\right)=-\frac{8}{3}\left[\frac{3}{n \pi} \cos \left(\frac{n \pi x}{3}\right)\right]_{0}^{3}
$$

$$
\begin{aligned}
& =-\frac{8}{3}\left[\frac{3}{n \pi}\left((-1)^{n}-1\right)\right] \\
& \text { If } n \text { is even (i.e. } 2 n) \rightarrow b_{n}=0 \\
& \text { If } n \text { is odd (i.e. } 2 n-1) \rightarrow b_{n}=\frac{16}{\pi} \frac{1}{2 n-1}
\end{aligned}
$$

Therefore, the Fourier series is then $\frac{16}{\pi} \sum_{n=1}^{\infty} \frac{1}{2 n-1} \sin \left(\frac{(2 n-1) \pi x}{3}\right)$. Note that, it converges to 0 if $\mathrm{x}=0$ or $\mathrm{x}=3$, and to 4 for $0<\mathrm{x}<3$.

