海洋大學河海工程學系九十四學年度 第二學期 □_{小考} 考試命題紙

考試科目	開課系級	考試日期	印製份數	答案紙	命題教師	備	註
工程數學二	<u> </u>	6月2日	110	■ 需	陳桂鴻 呂學育	第三次大考	

- **1.** (1) Proof $F[f(t) * g(t)] = F(\omega)G(\omega)$, where * is convolution operator.(10%)
 - (2) $f(t) = e^{-a|t|}, a > 0$, compute F[f(t)]. (3%)
 - (3) $g(t) = \delta(t-1)$, compute F[g(t)]. (4%)
 - (4) Compute F[f(t)*g(t)]=?(3%)
 - (5) Solve y_p of y''(t) + 2y(t) = f(t) * g(t). $\left[F^{-1}\left[\frac{1}{2-w^2}\right] = \frac{\pi \sin\sqrt{2}t}{\sqrt{2}}$ by using Residue theorem (10%)
- 2. (1) Derive the Fourier transform formulation by using the complex Fourier series. (10%)
 - (2) Write the formulations of transform pairs according to your knowledge. (5%)
 - (3) Proof the relations of $F(\omega)$ and $A(\omega), B(\omega)$, where $F(\omega)$ is the Fourier transform of f(t), and $A(\omega), B(\omega)$ are the Fourier integral coefficients of f(t). (15%)
- **3.** (1) The Heaviside function H(t) is given by $H(t) = \begin{cases} 1 & t \ge 0 \\ 0 & t < 0 \end{cases}$

Find the Fourier transform of $f(t) = H(t)e^{-at}$ with a a positive constant. (4 scores)

- (2) Determine the value of $\frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{3i\omega}}{4+i\omega} e^{i\omega t} d\omega$ (5 scores)
- (3) Find the Fourier transform of the Dirac delta function $\delta(t)$, $F\{\delta(t)\}$ (4 scores)
- (4) Find the Fourier transform of $F\{\delta(t)\}$, $F\{F\{\delta(t)\}\}$ (5 scores)
- (5) Find the Fourier transform of $\cos(5t)$, $F\{\cos(5t)\}$ (5 scores)
- **4.** (1) Solve $\frac{d^2y(t)}{dt^2} + 4y(t) = \cos(\omega_0 t)$ using Fourier transform with ω_0 a real number (15 scores)
 - (2) Discuss your result obtained in (1) if $\omega_0 = 2$ (5 scores)
- **5.** (1) Find the Fourier sine transform of $f(t) = e^{-at}$ with a a positive constant. (5 scores)
 - (2) If we assume that $f(t) \to 0$, $f'(t) \to 0$ as $t \to \infty$, solve the boundary-value problem $y''(t) 2y(t) = e^{-t}$, $0 < t < \infty$, with $y(0) = y_0$. (12 scores)