Integration and Differentiation of Fourier Series
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Consider an infinite series of function
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Such a series is said to be convergent for a given value of x if its partial sums
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have a finite limit s(x) = hIlim Sy (x)

where s(x) is said to be the sum of the series, and is a function of x. If the series
converges for all x in the interval [a, b], then its sum s(x) is defined on the whole
interval [a, b].

Weierstrass’s M-test
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(and absolutely) on [a, b].

Theorem

If the terms of the series are continuous on [a, b] and if the series is uniformly
convergenton [a, b],then
a) The sum of the series is continuous;

b) The sum can be integrated term by term, namely
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Theorem

If the series converges, if the terms are differentiable and if the series
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is uniformly convergent on [a, b], then (i fn(x)j :s'(x):i f(x)
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Namely, the series can be differentiated term by term.



