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Consider an infinite series of function 
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Such a series is said to be convergent for a given value of x  if its partial sums 
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where )(xs  is said to be the sum of the series, and is a function of x . If the series 
converges for all x  in the interval [ ]ba, , then its sum )(xs  is defined on the whole 
interval [ ]ba, . 

 
Weierstrass’s M-test 

If the series of positive numbers   ⋅⋅⋅++⋅⋅⋅++ nMMM 21  

converges and if for any x  in the interval [ ]ba,  we have nn Mxf ≤)(  from a 

certain n  on, then )()()()(
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(and absolutely) on [ ]ba, . 
 

Theorem 

If the terms of the series are continuous on [ ]ba,  and if the series is uniformly 
convergent on [ ]ba, , then 

a) The sum of the series is continuous; 

b) The sum can be integrated term by term, namely 
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Theorem 

If the series converges, if the terms are differentiable and if the series  
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is uniformly convergent on [ ]ba, , then )()()( '
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Namely, the series can be differentiated term by term. 


