Fourier series of even and odd functions

Revised 2006.4.16
If $f(x)$ is an even or odd function, then some of the Fourier coefficients can be immediately to be zero, and we need not carry out the integrations explicitly.

Definition:

1) $f(x)$ is an even function on $[-P, P]$ if $f(-x)=f(x)$ for $-P \leq x \leq P$.
\rightarrow the graph of an even function is symmetrical about the y axis.

Graph of a typical even function symmetric about the y axis
2) $f(x)$ is an odd function on $\left[\begin{array}{ll}-P, & P\end{array}\right]$ if $f(-x)=-f(x)$ for $-P \leq x \leq P$.
\rightarrow the graph of an odd function is symmetrical about the origin.

Graph of a typical odd function, symmetric through the origin

Then even and the odd functions behave like even and odd integers under multiplication satisfying the following properties:
even • even=even

$$
\begin{aligned}
& h(x)=f(x) \cdot g(x) \\
& h(-x)=f(-x) \cdot g(-x)=f(x) \cdot g(x)=h(x)
\end{aligned}
$$

odd • odd=even

$h(x)=f(x) \cdot g(x)$
$h(-x)=f(-x) \cdot g(-x)=(-f(x)) \cdot(-g(x))=f(x) \cdot g(x)=h(x)$
even • odd=odd
$h(x)=f(x) \cdot g(x)$
$h(-x)=f(-x) \cdot g(-x)=f(x) \cdot(-g(x))=-f(x) \cdot g(x)=-h(x)$

The integration of an even/odd function on $\left[\begin{array}{ll}-a, & a\end{array}\right]$
$\int_{-a}^{a} f(x) d x=\int_{-a}^{0} f(x) d x+\int_{0}^{a} f(x) d x$
If we set $x=-y \rightarrow d x=-d y$
If $f(x)$ is an even function on $[-a, a]$
$\rightarrow \int_{-a}^{0} f(x) d x=\int_{a}^{0} f(-y)(-d y)=-\int_{a}^{0} f(y) d y=\int_{0}^{a} f(y) d y$
$\rightarrow \int_{-a}^{a} f(x) d x=\int_{-a}^{0} f(x) d x+\int_{0}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x$

If $f(x)$ is an odd function on $\left[\begin{array}{cc}-a, & a\end{array}\right]$
$\rightarrow \int_{-a}^{0} f(x) d x=\int_{a}^{0} f(-y)(-d y)=\int_{a}^{0} f(y) d y=-\int_{0}^{a} f(y) d y$
$\rightarrow \int_{-a}^{a} f(x) d x=-\int_{0}^{a} f(x) d x+\int_{0}^{a} f(x) d x=0$

Example: It is clear that $\cos (n x)$ is an even function and $\sin (n x)$ is an odd function. If $f(x)$ is an even function with period 2π, then $f(x) \cos (n x)$ is even and $f(x) \sin (n x)$ is odd.

