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If )(xf  is an even or odd function, then some of the Fourier coefficients can be 

immediately to be zero, and we need not carry out the integrations explicitly. 

Definition: 

1) )(xf  is an even function on [ ]PP,−  if )()( xfxf =−  for PxP ≤≤− . 

the graph of an even function is symmetrical about the y axis. 

 

 

 

 

 

 

 

 

 

 

Graph of a typical even function symmetric about the y axis 

 

2) )(xf  is an odd function on [ ]PP,−  if )()( xfxf −=−  for PxP ≤≤− . 

 the graph of an odd function is symmetrical about the origin. 

 

 

 

 
Graph of a typical odd function, symmetric through the origin 

 

 
Then even and the odd functions behave like even and odd integers under 

multiplication satisfying the following properties: 
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The integration of an even/odd function on [ ]aa,−  
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If we set yx −=  dydx −=  

If )(xf  is an even function on [ ]aa,−  
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If )(xf  is an odd function on [ ]aa,−  

dyyfdyyfdyyfdxxf
a

aaa
)()())(()(

0

000

∫∫∫∫ −==−−=
−

 

0)()()(
00

=+−= ∫∫∫− dxxfdxxfdxxf
aaa

a
 

 

Example: It is clear that )cos(nx  is an even function and )sin(nx  is an odd function. 

If )(xf  is an even function with period π2 , then )cos()( nxxf  is even and 

)sin()( nxxf  is odd. 

 

 

 

 


