Due on March 1

1) Find a vector \vec{b} that is parallel to the given vector and has the indicated magnitude $\vec{a}=3 \vec{i}+7 \vec{j}, \quad|\vec{b}|=2$ (Problem 31, page 302).
2) $\vec{a}=\langle 1,-3,2\rangle, \vec{b}=\langle-1,1,1\rangle$ and $\vec{c}=\langle 2,6,9\rangle$. Find the indicated vector or scalar $\left|\frac{\vec{a}}{|\vec{a}|}\right|+5\left|\frac{\vec{b}}{|\vec{b}|}\right|$ (Problem 47, page 309).
3) Find parametric and symmetric equations for the line through the given point parallel to the given vector $(4,6,-7), \vec{a}=\langle 3,1 / 2,-3 / 2\rangle$ (Problem 19, page 329).
4) Find the parametric equation of the tangent line to the given curve at the indicated value of t. $x=t, y=t^{2} / 2, z=t^{3} / 3 ; t=2$ (Problem 25, page 454).
5) Find the length of the curve traced by the given vector function on the indicated interval $\vec{r}(t)=a \cos (t) \vec{i}+a \sin (t) \vec{j}+c t \vec{k} ; 0 \leq t \leq 2 \pi \quad$ (Problem 41, page 454).
