HOMEWORK #1 (Chapter 7 Vectors > 9.1 Vector Functions)

Due on March 1

- 1) Find a vector \vec{b} that is parallel to the given vector and has the indicated magnitude $\vec{a} = 3\vec{i} + 7\vec{j}$, $|\vec{b}| = 2$ (Problem 31, page 302).
- 2) $\vec{a} = \langle 1, -3, 2 \rangle$, $\vec{b} = \langle -1, 1, 1 \rangle$ and $\vec{c} = \langle 2, 6, 9 \rangle$. Find the indicated vector or scalar $\left| \frac{\vec{a}}{|\vec{a}|} \right| + 5 \left| \frac{\vec{b}}{|\vec{b}|} \right|$ (Problem 47, page 309).
- 3) Find parametric and symmetric equations for the line through the given point parallel to the given vector (4, 6, -7), $\vec{a} = \langle 3, 1/2, -3/2 \rangle$ (Problem 19, page 329).
- 4) Find the parametric equation of the tangent line to the given curve at the indicated value of t. x = t, $y = t^2/2$, $z = t^3/3$; t = 2 (Problem 25, page 454).
- 5) Find the length of the curve traced by the given vector function on the indicated interval $\vec{r}(t) = a\cos(t)\vec{t} + a\sin(t)\vec{j} + ct\vec{k}; \ 0 \le t \le 2\pi$ (Problem 41, page 454).