1) Suppose $\vec{r}(t)=t^{2} \stackrel{\rightharpoonup}{i}+\left(t^{3}-2 t\right) \vec{j}+\left(t^{2}-5 t\right) \vec{k}$ is the position vector of a moving particle. At what points does the particle pass through the xy-plane ? What are its speed, velocity, acceleration and tangent line (to the curve traced by $\vec{r}(t)$) at these points ? (Problem 9, page 457).
2) Suppose $\vec{r}(t)$ is the position vector of a moving particle. Find the curvature, the tangential and normal components of the acceleration at any t. $\vec{r}(t)=5 \cos (t) \vec{i}+5 \sin (t) \vec{j}$ (Problem 13 , page 463).
3) If $u=f(x, y)$ and $x=r \cos \theta, y=r \sin \theta$, show that Laplace's equation $\partial^{2} u / \partial x^{2}+\partial^{2} u / \partial y^{2}=0$ becomes $\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0 \quad$ (Problem 53, page 470).
4) Find the directional derivative of the given function at the given point in the directed direction $f(x, y)=\tan ^{-1} \frac{y}{x} ;(2,-2), \vec{i}-3 \vec{j} \quad$ (Problem 13, page 475).
