HOMEWORK #2 (9.2 ~9.5)

Due on March 8

- 1) Suppose $\vec{r}(t) = t^2 \vec{i} + (t^3 2t)\vec{j} + (t^2 5t)\vec{k}$ is the position vector of a moving particle. At what points does the particle pass through the xy-plane ? What are its speed, velocity, acceleration and tangent line (to the curve traced by $\vec{r}(t)$) at these points ? (Problem 9, page 457).
- 2) Suppose $\vec{r}(t)$ is the position vector of a moving particle. Find the curvature, the tangential and normal components of the acceleration at any $t \cdot \vec{r}(t) = 5\cos(t)\vec{i} + 5\sin(t)\vec{j}$ (Problem 13, page 463).
- 3) If u = f(x, y) and $x = r \cos \theta$, $y = r \sin \theta$, show that Laplace's equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ becomes $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0$ (Problem 53, page 470).
- 4) Find the directional derivative of the given function at the given point in the directed direction $f(x, y) = \tan^{-1} \frac{y}{x}$; (2,-2), $\vec{i} 3\vec{j}$ (Problem 13, page 475).