Due on March 15

- 1) Find an equation of the tangent plane to the graph of the given equation at the indicated point $x^2 + y^2 + z^2 = 9$; (-2,2,1) (Problem 15, page 480).
- 2) Graph some representative vectors in the given vector field, and find the curl and the divergence of the given vector field. Also, what can you say about a source or sink based on the divergent result ? $\vec{F}(x, y) = x\vec{i} + y\vec{j}$ (Problem 1, page 484).
- 3) Find the curl and the divergence of the given vector field $\vec{F}(x, y, z) = (x - y)^3 \vec{i} + e^{-yz} \vec{j} + xy e^{2y} \vec{k}$ (Problem 10, page 484).
- 4) For a differentiable function f(x, y, z)
 - (1) compute $\nabla f(x, y, z)$
 - (2) is $\nabla f(x, y, z)$ a scalar or vector ?
 - (3) Show that $\nabla \cdot \nabla f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$

This is known as the Laplacian and is also written $\nabla^2 f$ (Problem 33, page 485).

5) Evaluate $\int_{C} G(x, y) dx$, $\int_{C} G(x, y) dy$ and $\int_{C} G(x, y) ds$ on the indicated curve C

G(x, y) = 2xy; $x = 5\cos(t)$, $y = 5\sin(t)$, $0 \le t \le \pi/4$ (Problem 1, page 493).