1) Consider the line integral in Example 4 (page 518) on the curve C consisting of the four straight segments $C_{1}, C_{2}, C_{3}, C_{4} \oint_{c} \frac{-y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y$.
(1) Is Green's theorem applicable to the line integral ? (i.e. Can you relate the line integral to a double integral using Green's theorem) ? Why ?
(2) Compute the line integral on the curve C by using $\oint_{c}=\int_{c_{1}}+\int_{c_{2}}+\int_{c_{3}}+\int_{c_{4}}$

2) Consider the line integral in Example 6 (page 519) on the curve C consisting of the four straight segments $C_{1}, C_{2}, C_{3}, C_{4}$. Apply the Green's theorem to evaluate line integral on the curve C.
Note that we choose the curve C^{\prime} to be $x^{2}+y^{2}=a^{2}$ where a is small enough so that the circle lies entirely with C.

3) A lamina has the shape of the region bounded by the graph of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

If its density is $\rho(x, y)=1$, find (Problem 61, page 510).
(1) the moment of inertia about the x-axis of the lamina,
(2) the moment of inertia about the y-axis of the lamina,
(3) the radius of gyration about the x-axis,
(4) the radius of gyration about the y-axis
4) Find the center of mass of the lamina that has the given shape and density $y=\sqrt{3} x, \quad y=0, \quad x=3 ; \quad \rho(r, \theta)=r^{2} \quad$ (Problem 13, page 514).
5) Show that the given integral is independent of the path and the evaluate it $\int_{(1,0,0)}^{(2, \pi / 2,1)}\left(2 x \sin y+e^{3 z}\right) d x+x^{2} \cos y d y+\left(3 x e^{3 z}+5\right) d z \quad$ (Problem 21, page 502).

