1) Proceed as in Example 6 (page 519) to evaluate the given line integral $\oint_{c} \frac{-y^{3} d x+x y^{2} d y}{\left(x^{2}+y^{2}\right)^{2}}$ where C is the ellipse $x^{2}+4 y^{2}=4$ (Problem 25, page 521).
2) In the problem (Problem 25, page 528), evaluate $\iint_{S}\left(3 z^{2}+4 y z\right) d S$, where S is the portion of the plane $x+2 y+3 z=6$ in the first octant. Use the portion of S onto the coordinate plane indicated in the given plane.
3) Use Stokes' theorem to evaluate $\oint_{C} \vec{F} \cdot d \vec{r}$ Assume C is oriented counterclockwise as viewed from above. $\vec{F}=y^{3} \vec{i}-x^{3} \vec{j}+z^{3} \vec{k}$; C is the trace of the cylinder $x^{2}+y^{2}=1$ in the plane $x+y+z=1$ (Problem 9, page 534).
4) Use the divergence theorem to find the outward flux $\iint_{S}(\vec{F} \cdot \vec{n}) d S$ of the given vector filed $\vec{F}=x^{3} \stackrel{\rightharpoonup}{i}+y^{3} \stackrel{\rightharpoonup}{j}+z^{3} \vec{k} ; D$ the region bounded by the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ (Problem 3, page 550).
