海洋大學河海工程學系九十四學年度 第二學期小考

考 試 科 目	開課系級	考試日期	印製份數	答案紙	命題教師	備 註
工程數學二	二 A, B	5月12日	110		陳桂鴻呂學育	第二次大考

1．$y^{\prime \prime}(t)+\omega^{2} y(t)=F(t)$ where $F(t)=\left\{\begin{array}{ll}1, & t \in(0, \pi) \\ 0, & t \in(\pi, 2 \pi)\end{array}\right.$ and $F(t)=F(t+2 \pi) .(20 \%)$
（a）Find $y_{p}(t)$ by using the complex Fourier expansion．（10\％）
（b）Plot the frequency spectrum of $y_{p}(t)$ ．（5\％）
（c）Choice the right answer and explain why when cause the phenomenon of Resonance as（5\％）
（1）ω is odd numbers．
（2）ω is even numbers．
（3）ω is integer numbers．
（4）The resonance will not occur．

2．Suppose a uniform beam of length L is simply supported at $x=0$ and at $x=L$ ．If the load per unit length is given by $r(x)=\left\{\begin{array}{cc}0, & 0<x<L \\ w_{0}(x-L), & L<x<2 L \\ 0, & 2 L<x<3 L\end{array}, \quad 0<x<3 L, \quad r(x+3 L)=r(x)\right.$ ，and then the differential equation for the deflection $y(x)$ is $E I \frac{d^{4} y}{d x^{4}}=r(x)$ ，where E ，I ，and w_{0} are constants． （40\％）
（a）Find the homogenous solution y_{h} ．（5\％）
（b）Expand $r(x)$ in a half－range cosine series．（7\％）
（c）Find a particular solution $y_{p}(x)$ by using the Fourier series expansion．（10\％）
（d）Expand $r(x)$ in a complex Fourier series and plot frequency spectrum of $r(x)$ ．（8\％）
（e）Find a particular solution $y_{p}(x)$ by using the complex Fourier series expansion．（10\％）
3．Consider $f(x)=x+\pi, \quad-\pi<x<\pi$
（1）determine whether the function f is even，odd，or neither（3 scores）
（2）find the Fourier series of f on the given interval $(-\pi, \pi)$（8 scores）
（3）give the values that the series will converge at $x=-\pi, 0, \pi / 2, \pi$（4 scores）
（4）use the result of（2）to show $\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots$（5 scores）

4．Expand $f(\mathrm{x})=\left\{\begin{array}{ccc}x & \text { for } & 0 \leq x \leq L / 2 \\ L-x & \text { for } & L / 2<x \leq L\end{array}\right.$
（1）in a sine series AND give the value that the series will converge at $x=L$ （10 scores）
（2）in a cosine series AND give the value that the series will converge at $x=L$ （10 scores）
5. $f(x)=\left\{\begin{aligned}-1, & -2<x<0 \\ 1, & 0<x<2\end{aligned}\right.$
(1) find the complex Fourier series of f on the given interval (10 scores)
(2) find the frequency spectrum of the periodic wave that is the periodic extension of the function f (10 scores)

