海洋大學河海工程學系九十四學年度 第二學期

```
■期中
```

考試命題紙

考試科目	開課系級	考試日期	印製份數	答案紙	命題教師	備	註
工程數學二	<u> </u>	5月12日	110	■ 需 □不需	陳桂鴻 呂學育	第二次	、大考

1. $y''(t) + \omega^2 y(t) = F(t)$ where $F(t) = \begin{cases} 1, & t \in (0,\pi) \\ 0, & t \in (\pi, 2\pi) \end{cases}$ and $F(t) = F(t + 2\pi).$ (20%)

(a) Find $y_p(t)$ by using the complex Fourier expansion. (10%)

(b) Plot the frequency spectrum of $y_p(t)$. (5%)

(c) Choice the right answer and explain why when cause the phenomenon of Resonance as (5%)

(1) ω is odd numbers. (2) ω is even numbers.

(3) ω is integer numbers. (4) The resonance will not occur.

2. Suppose a uniform beam of length L is simply supported at x=0 and at x=L. If the load per unit

length is given by $r(x) = \begin{cases} 0, & 0 < x < L \\ w_0(x-L), & L < x < 2L \\ 0, & 2L < x < 3L \end{cases}$, 0 < x < 3L, r(x+3L) = r(x), and then the

differential equation for the deflection y(x) is $EI\frac{d^4y}{dx^4} = r(x)$, where *E*, *I*, and w_0 are constants.

(40%)

(a) Find the homogenous solution y_h . (5%)

(b) Expand r(x) in a half-range cosine series. (7%)

(c) Find a particular solution $y_p(x)$ by using the Fourier series expansion.(10%)

(d) Expand r(x) in a complex Fourier series and plot frequency spectrum of r(x). (8%)

(e) Find a particular solution $y_p(x)$ by using the complex Fourier series expansion. (10%)

3. Consider $f(x) = x + \pi$, $-\pi < x < \pi$

(1) determine whether the function f is even, odd, or neither (3 scores)

- (2) find the Fourier series of f on the given interval $(-\pi, \pi)$ (8 scores)
- (3) give the values that the series will converge at $x = -\pi$, 0, $\pi/2$, π (4 scores)

(4) use the result of (2) to show $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$ (5 scores)

- 4. Expand $f(\mathbf{x}) = \begin{cases} x & \text{for} \quad 0 \le x \le L/2 \\ L x & \text{for} \quad L/2 < x \le L \end{cases}$
 - (1) in a sine series AND give the value that the series will converge at x = L (10 scores)
 - (2) in a cosine series AND give the value that the series will converge at x = L (10 scores)

5.
$$f(x) = \begin{cases} -1, & -2 < x < 0 \\ 1, & 0 < x < 2 \end{cases}$$

(1) find the complex Fourier series of f on the given interval (10 scores)

- (2) find the frequency spectrum of the periodic wave that is the periodic extension of the function
 - f (10 scores)