
Review exercise 2 
 
1) A real-valued function f  is said to be periodic with period T  if 

( ) ( )f x T f x+ = . For example, 4π  is a period of sin x  since 
sin( 4 ) sinx xπ+ = . The smallest value of  for which T ( ) ( )f x T f x+ =  holds 
is called the fundamental period of f . For example, the fundamental period of 

( ) sinf x x=  is 2T π= . What is the fundamental period of each of the following 
functions ? (Exercise 12.1, problem 21) 
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2) In this problem, find the Fourier series of f  on the given interval  
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 (Exercise 12.2, Problem 11) 

 
3) In this problem, expand the given function in an appropriate cosine or sine series 

( )f x x= , xπ π− < <  (Exercise 12.3, Problem 13) 

 
4) In this problem, expand the given function in an appropriate cosine or sine series 

2( )f x x= , 1 1x− < <  (Exercise 12.3, Problem 15) 
 
5) In this problem, find the half-range cosine and sine expansions of the given 

function 2( )f x x x= + , 0 1x< <  (Exercise 12.3, Problem 33) 
 
6) In this problem, expand the given function in a Fourier series  

2( )f x x= , 0 2x π< <  (Exercise 12.3, Problem 35) 
 
7) Find the frequency spectrum of the periodic wave that is the periodic extension  

of the function f in Problem 1 (Exercise 12.4, problem 7) 
In Problem 1, find the complex Fourier series of f on the given interval 
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8) Suppose the function , 2( ) 1f x x= + 0 x 3< < , is expanded in a Fourier series , a 

cosine series, and a sine series. Give the value to which each series will converge 
at  (Chapter 12 Review Exercises, problem 7) 0x =

 


