Review exercise 2s

1) A real-valued function f is said to be periodic with period T if $f(x+T)=f(x)$. For example, 4π is a period of $\sin x$ since $\sin (x+4 \pi)=\sin x$. The smallest value of T for which $f(x+T)=f(x)$ holds is called the fundamental period of f. For example, the fundamental period of $f(x)=\sin x$ is $T=2 \pi$. What is the fundamental period of each of the following functions ? (Exercise 12.1, problem 21)
(a) $f(x)=\cos 2 \pi x$
(b) $f(x)=\sin \frac{4}{L} x$
(c) $f(x)=\sin x+\sin 2 x$
(d) $f(x)=\sin 2 x+\cos 4 x$
(e) $f(x)=\sin 3 x+\cos 2 x$
(f) $f(x)=A_{0}+\sum_{n=1}^{\infty}\left(A_{n} \cos \frac{n \pi}{p} x+B_{n} \sin \frac{n \pi}{p} x\right)$, A_{n} and B_{n} depend only on n

ANS (a) The fundamental period is $2 \pi / 2 \pi=1$
(b) The fundamental period is $2 \pi /(4 / L)=\frac{1}{2} \pi L$
(c) The fundamental period of $\sin x+\sin 2 x$ is 2π
(d) The fundamental period of $\sin 2 x+\cos 4 x$ is $2 \pi / 2=\pi$
(e) The fundamental period of $\sin 3 x+\cos 2 x$ is 2π
(f) The fundamental period of $f(x)$ is $2 \pi /(n \pi / p)=2 p / n$
2) In this problem, find the Fourier series of f on the given interval

$$
f(x)=\left\{\begin{aligned}
0, & -2<x<-1 \\
-2, & -1 \leq x<0 \\
1, & 0 \leq x<1 \\
0, & 1 \leq x<2
\end{aligned}\right. \text { (Exercise 12.2, Problem 11) }
$$

ANS $a_{0}=\frac{1}{2} \int_{-2}^{2} f(x) d x=\frac{1}{2}\left(\int_{-1}^{0}-2 d x+\int_{0}^{1} 1 d x\right)=-\frac{1}{2}$

$$
\begin{aligned}
& a_{n}=\frac{1}{2} \int_{-2}^{2} f(x) \cos \frac{n \pi}{2} x d x=\frac{1}{2}\left(\int_{-1}^{0}\left[-2 \cos \frac{n \pi}{2} x\right] d x+\int_{0}^{1} \cos \frac{n \pi}{2} x d x\right)=-\frac{1}{n \pi} \sin \frac{n \pi}{2} \\
& b_{n}=\frac{1}{2} \int_{-2}^{2} f(x) \sin \frac{n \pi}{2} x d x=\frac{1}{2}\left(\int_{-1}^{0}\left[-2 \sin \frac{n \pi}{2} x\right] d x+\int_{0}^{1} \sin \frac{n \pi}{2} x d x\right)=\frac{3}{n \pi}\left(1-\cos \frac{n \pi}{2}\right) \\
& f(x)=-\frac{1}{4}+\sum_{n=1}^{\infty}\left[-\frac{1}{n \pi} \sin \frac{n \pi}{2} \cos \frac{n \pi}{2} x+\frac{3}{n \pi}\left(1-\cos \frac{n \pi}{2}\right) \sin \frac{n \pi}{2} x\right]
\end{aligned}
$$

3) In this problem, expand the given function in an appropriate cosine or sine series

$$
f(x)=|x|, \quad-\pi<x<\pi \quad \text { (Exercise 12.3, Problem 13) }
$$

ANS Since $f(x)$ is an even function, we expand in a cosine series:

$$
\begin{aligned}
& a_{0}=\frac{2}{\pi} \int_{0}^{\pi} x d x=\pi \\
& a_{n}=\frac{2}{\pi} \int_{0}^{\pi} x \cos n x d x=\frac{2}{n^{2} \pi}\left[(-1)^{n}-1\right]
\end{aligned}
$$

Thus

$$
f(x)=\frac{\pi}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi}\left[(-1)^{n}-1\right] \cos n x
$$

4) In this problem, expand the given function in an appropriate cosine or sine series $f(x)=x^{2},-1<x<1 \quad$ (Exercise 12.3, Problem 15)
ANS Since $f(x)$ is an even function, we expand in a cosine series:

$$
\begin{aligned}
& a_{0}=2 \int_{0}^{1} x^{2} d x=\frac{2}{3} \\
& a_{n}=2 \int_{0}^{1} x^{2} \cos n \pi x d x=2\left(\left.\frac{x^{2}}{n \pi} \sin n \pi x\right|_{0} ^{1}-\frac{2}{n \pi} \int_{0}^{1} x \sin n \pi x d x\right)=\frac{4}{n^{2} \pi^{2}}(-1)^{n}
\end{aligned}
$$

Thus
$f(x)=\frac{1}{3}+\sum_{n=1}^{\infty} \frac{4}{n^{2} \pi^{2}}(-1)^{n} \cos n \pi x$
5) In this problem, find the half-range cosine and sine expansions of the given function
$f(x)=x^{2}+x, \quad 0<x<1$ (Exercise 12.3, Problem 33)
ANS $a_{0}=2 \int_{0}^{1}\left(x^{2}+x\right) d x=\frac{5}{3}$

$$
\begin{aligned}
a_{n} & =2 \int_{0}^{1}\left(x^{2}+x\right) \cos n \pi x d x=\left.\frac{2\left(x^{2}+x\right)}{n \pi} \sin n \pi x\right|_{0} ^{1}-\frac{2}{n \pi} \int_{0}^{1}(2 x+1) \sin n \pi x d x \\
& =\frac{2}{n^{2} \pi^{2}}\left[3(-1)^{n}-1\right] \\
b_{n} & =2 \int_{0}^{1}\left(x^{2}+x\right) \sin n \pi x d x=-\left.\frac{2\left(x^{2}+x\right)}{n \pi} \cos n \pi x\right|_{0} ^{1}+\frac{2}{n \pi} \int_{0}^{1}(2 x+1) \cos n \pi x d x \\
& =\frac{4}{n \pi}(-1)^{n+1}+\frac{4}{n^{3} \pi^{3}}\left[(-1)^{n}-1\right] \\
f(x) & =\frac{5}{6}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left[3(-1)^{n}-1\right] \cos n \pi x
\end{aligned}
$$

$$
f(x)=\sum_{n=1}^{\infty}\left(\frac{4}{n \pi}(-1)^{n+1}+\frac{4}{n^{3} \pi^{3}}\left[(-1)^{n}-1\right]\right) \sin n \pi x
$$

6) In this problem, expand the given function in a Fourier series

$$
f(x)=x^{2}, \quad 0<x<2 \pi \quad \text { (Exercise 12.3, Problem 35) }
$$

ANS $a_{0}=\frac{1}{\pi} \int_{0}^{2 \pi} x^{2} d x=\frac{8}{3} \pi^{2}$

$$
\begin{aligned}
& a_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} x^{2} \cos n x d x=\frac{4}{n^{2}} \\
& b_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} x^{2} \sin n x d x=-\frac{4 \pi}{n} \\
& f(x)=\frac{4}{3} \pi^{2}+\sum_{n=1}^{\infty}\left(\frac{4}{n^{2}} \cos n x-\frac{4 \pi}{n} \sin n x\right)
\end{aligned}
$$

7) Find the frequency spectrum of the periodic wave that is the periodic extension of the function f in Problem 1 (Exercise 12.4, problem 7)
In Problem 1, find the complex Fourier series of f on the given interval

$$
f(x)=\left\{\begin{aligned}
-1, & -2<x<0 \\
1, & 0<x<2
\end{aligned}\right.
$$

ANS The fundamental period is $T=4$, so $w=2 \pi / 4=\pi / 2$ and the values of $n w$ are $0, \pm \pi / 2, \pm \pi, \pm 3 \pi / 2, \cdots$. From Problem $1, c_{0}=0$ and $\left|c_{n}\right|=\left(1-(-1)^{n}\right) / n \pi$. The table shows some values of n with corresponding values of $\left|c_{n}\right|$. The graph is a portion of the frequency spectrum.

n	-5	-4	-3	-2	-1	0	1	2	3	4	5
c_{n}	0.1273	0.0000	0.2122	0.0000	0.6366	0.0000	0.6366	0.0000	0.2122	0.0000	0.1273

8) Suppose the function $f(x)=x^{2}+1,0<x<3$, is expanded in a Fourier series, a
cosine series, and a sine series. Give the value to which each series will converge at $x=0$ (Chapter 12 Review Exercises, problem 7)

ANS The Fourier series will converge to 1 , the cosine series to 1 , and the sine series to 0 at $x=0$. Respectively, this is because the rule $\left(x^{2}+1\right)$ defining $f(x)$ determines a continuous function on $(-3,3)$, the even expansion of f to $(-3,0)$ is continuous at 0 , and the odd extension of f to $(-3,0)$ approaches -1 as x approaches 0 from the left.

