
Review exercise 2s 
 

1) A real-valued function f  is said to be periodic with period T  
if ( ) ( )f x T f x+ = . For example, 4π  is a period of sin x  since 
sin( 4 ) sinx xπ+ = . The smallest value of T  for which ( ) ( )f x T f x+ =  holds 
is called the fundamental period of f . For example, the fundamental period of 

( ) sinf x x=  is 2T π= . What is the fundamental period of each of the following 
functions ? (Exercise 12.1, problem 21) 
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nA  and nB  depend only on n  
ANS (a) The fundamental period is 2 / 2 1π π =  

(b) The fundamental period is 12 /(4 / )
2

L Lπ π=  

(c) The fundamental period of sin sin 2x x+  is 2π  
(d) The fundamental period of sin 2 cos 4x x+  is 2 / 2π π=  
(e) The fundamental period of sin 3 cos 2x x+  is 2π  
(f) The fundamental period of ( )f x  is 2 /( / ) 2 /n p p nπ π =  

 
2) In this problem, find the Fourier series of f  on the given interval  
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 (Exercise 12.2, Problem 11) 
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3) In this problem, expand the given function in an appropriate cosine or sine series 



( )f x x= , xπ π− < <  (Exercise 12.3, Problem 13) 

ANS Since ( )f x  is an even function, we expand in a cosine series: 
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4) In this problem, expand the given function in an appropriate cosine or sine series 

2( )f x x= , 1 1x− < <  (Exercise 12.3, Problem 15) 
ANS Since ( )f x  is an even function, we expand in a cosine series: 
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5) In this problem, find the half-range cosine and sine expansions of the given 

function 
2( )f x x x= + , 0 1x< <  (Exercise 12.3, Problem 33) 

ANS 
1 2

0 0

52 ( )
3

a x x dx= + =∫  

21 12 1
00 0

2( ) 22 ( ) cos sin (2 1)sinn
x xa x x n xdx n x x n xdx
n n

π π π
π π
+

= + = − +∫ ∫  

2 2

2 [3( 1) 1]n

n π
= − −  

21 12 1
00 0

2( ) 22 ( )sin cos (2 1)cosn
x xb x x n xdx n x x n xdx
n n

π π π
π π
+

= + = − + +∫ ∫  

1
3 3

4 4( 1) [( 1) 1]n n

n nπ π
+= − + − −  

2 2
1

5 2( ) [3( 1) 1]cos
6

n

n
f x n x

n
π

π

∞

=

= + − −∑  



1
3 3

1

4 4( ) ( ( 1) [( 1) 1])sinn n

n
f x n x

n n
π

π π

∞
+

=

= − + − −∑  

 
6) In this problem, expand the given function in a Fourier series  

2( )f x x= , 0 2x π< <  (Exercise 12.3, Problem 35) 
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7) Find the frequency spectrum of the periodic wave that is the periodic extension  

of the function f  in Problem 1 (Exercise 12.4, problem 7) 
In Problem 1, find the complex Fourier series of f  on the given interval 
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ANS The fundamental period is 4T = , so 2 / 4 / 2w π π= =  and the values of nw   
are 0, / 2π± , π± , 3 / 2π± , . From Problem 1, 0 0c =  

and (1 ( 1) ) /n
nc nπ= − − . The table shows some values of n  with 

corresponding  

values of nc . The graph is a portion of the frequency spectrum. 

n  -5 -4 -3 -2 -1 0 1 2 3 4 5 

nc  0.1273 0.0000 0.2122 0.0000 0.6366 0.0000 0.6366 0.0000 0.2122 0.0000 0.1273

 
 
 
 
 
 
 

 
 
8) Suppose the function 2( ) 1f x x= + , 0 3x< < , is expanded in a Fourier series , a 
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cosine series, and a sine series. Give the value to which each series will converge 
at 0x =  (Chapter 12 Review Exercises, problem 7) 

ANS The Fourier series will converge to 1, the cosine series to 1, and the sine series  
to 0  at 0x = . Respectively, this is because the rule 2( 1)x +  defining  

( )f x  determines a continuous function on ( 3,3)− , the even expansion of f   
to ( 3,0)−  is continuous at 0 , and the odd extension of f  to ( 3,0)−  
approaches 1−  as x  approaches 0 from the left. 

 


