Taylor Series For Functions of One Variable

$$
f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)(x-a)^{2}}{2!}+\ldots+\frac{f^{(n-1)}(a)(x-a)^{n-1}}{(n-1)!}+\ldots
$$

Taylor Series For Functions of Two Variables

$$
\begin{aligned}
f(x, y) & =f(a, b)+(x-a) f_{x}(a, b)+(y-b) f_{y}(a, b) \\
& +\frac{1}{2!}\left\{(x-a)^{2} f_{x x}(a, b)+2(x-a)(y-b) f_{x y}(a, b)+(y-b)^{2} f_{y y}(a, b)\right\}+\ldots
\end{aligned}
$$

For the functions of two variables $f(x+h \cos \theta, y+h \sin \theta)$
Let's consider Taylor Series for $f(x+h \cos \theta, y+h \sin \theta)$ about (x, y)

$$
\begin{array}{ll}
& f(x+h \cos \theta, y+h \sin \theta)= \\
\rightarrow \quad & f(x, y)+(h \cos \theta) f_{x}(x, y)+(h \sin \theta) f_{y}(x, y) \\
& +\frac{1}{2!}\left\{\begin{array}{l}
(h \cos \theta)^{2} f_{x x}(x, y)+2(h \cos \theta)(h \sin \theta) f_{x y}(x, y) \\
+(h \sin \theta)^{2} f_{y y}(x, y)
\end{array}\right\}+\ldots
\end{array}
$$

$$
f(x+h \cos \theta, y+h \sin \theta)-f(x, y)=
$$

$\rightarrow \quad h\left[(\cos \theta) f_{x}(x, y)+(\sin \theta) f_{y}(x, y)\right]$

$$
+\frac{h^{2}}{2!}\left[\begin{array}{l}
(\cos \theta)^{2} f_{x x}(x, y)+2(\cos \theta)(\sin \theta) f_{x y}(x, y) \\
+(\sin \theta)^{2} f_{y y}(x, y)
\end{array}\right]+O\left(h^{3}\right)
$$

where $O\left(h^{3}\right)$ denotes the remainder with degree ≥ 3.

The Gradient of a function

We define a vector valued function called the gradient as
$\nabla f(x, y)=\operatorname{grad} f=\frac{\partial f}{\partial x} \vec{i}+\frac{\partial f}{\partial y} \vec{j}=\left\langle f_{x}, f_{y}\right\rangle ;$
$\nabla F(x, y, z)=\operatorname{grad} F=\frac{\partial F}{\partial x} \vec{i}+\frac{\partial F}{\partial y} \vec{j}+\frac{\partial F}{\partial z} \vec{k}=\left\langle f_{x}, f_{y}, f_{z}\right\rangle$

Definition 9.5 Directional Derivative

The directional derivative of $z=f(x, y)$ in the direction of a unit vector
$\vec{u}=\cos \theta \vec{i}+\sin \theta \vec{j}$ is $D_{\bar{u}} f(x, y)=\lim _{h \rightarrow 0} \frac{f(x+h \cos \theta, y+h \sin \theta)-f(x, y)}{h}$

Theorem 9.6 Computing a Directional Derivative

If $z=f(x, y)$ is a differentiable function of x and y and $\vec{u}=\cos \theta \vec{i}+\sin \theta \vec{j}$, then

$$
\begin{aligned}
D_{\bar{u}} f(x, y) & =\lim _{h \rightarrow 0} \frac{f(x+h \cos \theta, y+h \sin \theta)-f(x, y)}{h} \\
& =\nabla f(x, y) \cdot \vec{u}
\end{aligned}
$$

Proof:

$$
\begin{aligned}
D_{\bar{u}} f(x, y) & =\lim _{h \rightarrow 0} \frac{f(x+h \cos \theta, y+h \sin \theta)-f(x, y)}{h} \\
& =\lim _{h \rightarrow 0}\left\{\begin{array}{l}
\left\lfloor(\cos \theta) f_{x}(x, y)+(\sin \theta) f_{y}(x, y)\right\rfloor \\
+\frac{h}{2!}\left[\begin{array}{l}
(\cos \theta)^{2} f_{x x}(x, y)+2(\cos \theta)(\sin \theta) f_{x y}(x, y) \\
+(\sin \theta)^{2} f_{y y}(x, y)
\end{array}\right] \\
+O\left(h^{2}\right)
\end{array}\right] \\
& =(\cos \theta) f_{x}(x, y)+(\sin \theta) f_{y}(x, y) \\
& =\left\lfloor f_{x}(x, y) \vec{i}+f_{y}(x, y) \vec{j}\right\rfloor \cdot(\cos \theta \vec{i}+\sin \theta \vec{j}) \\
& =\nabla f(x, y) \cdot \vec{u} \\
& =\operatorname{comp}_{\bar{u}} \nabla f
\end{aligned}
$$

Similarly,

For a function $w=F(x, y, z)$ the directional derivative is defined by

$$
\begin{aligned}
D_{\bar{u}} F(x, y, z) & =\lim _{h \rightarrow 0} \frac{F(x+h \cos \alpha, y+h \cos \beta, z+h \cos \gamma)-F(x, y, z)}{h} \\
& =\nabla F(x, y, z) \cdot \bar{u}
\end{aligned}
$$

where α, β, γ are the direction angles of the vector \vec{u} relative to the positive x, y, z axes, respectively.

Maximum Value of the Directional Derivative

$$
D_{\bar{u}} f=\|\nabla f\|\|\vec{u}\| \cos \phi=\|\nabla f\| \cos \phi, \quad(\|\vec{u}\|=1)
$$

where ϕ is the angle between ∇f and \vec{u}

$$
\rightarrow 0 \leq \phi \leq \pi \quad=\Rightarrow-1 \leq \cos \phi \leq 1
$$

$\rightarrow-\|\nabla f\| \leq\|\nabla f\| \cos \phi \leq\|\nabla f\|$
$\rightarrow-\|\nabla f\| \leq D_{u} f \leq\|\nabla f\|$
$D_{\bar{u}} f=\|\nabla f\| \quad \leftarrow \vec{u}$ has the same direction as ∇f.
$D_{\bar{u}} f=-\|\nabla f\| \quad \Leftarrow \vec{u}$ and ∇f have opposite direction.

(From http://omega.albany.edu:8008/calc3/directional-derivatives-dir/define-m2h.html)

The partial derivative $f_{y}\left(x_{0}, y_{0}\right)$ is a special case of a directional derivative.
Consider a smooth function of two variables: $z=f(x, y)$
the partial derivative of $z=f(x, y)$ with respect to y at the point $\left(x_{0}, y_{0}\right)$ is denoted by $f_{y}\left(x_{0}, y_{0}\right)$. Geometrically the number $f_{y}\left(x_{0}, y_{0}\right)$ is the slope of the tangent line at the point $\left(x_{0}, y_{0}, z_{0}\right)$ to a curve on the surface $z=f(x, y)$. This curve is the intersection of the plane $x=x_{0}$ with the surface $z=f(x, y)$.

$$
f_{y}\left(x_{0}, y_{0}\right)=D_{\bar{j}} f\left(x_{0}, y_{0}\right)=\nabla f\left(x_{0}, y_{0}\right) \cdot \vec{j}
$$

Also,

$$
f_{x}\left(x_{0}, y_{0}\right)=D_{i} f\left(x_{0}, y_{0}\right)=\nabla f\left(x_{0}, y_{0}\right) \cdot \bar{i}
$$

