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Taylor Series For Functions of One Variable 
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Taylor Series For Functions of Two Variables 
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For the functions of two variables )sin,cos( θθ hyhxf ++   
Let’s consider Taylor Series for )sin,cos( θθ hyhxf ++  about ),( yx  
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where )( 3hO  denotes the remainder with degree ≥ 3. 
 

The Gradient of a function 

We define a vector valued function called the gradient as 
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Definition 9.5 Directional Derivative 
The directional derivative of ),( yxfz =  in the direction of a unit vector 
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Theorem 9.6 Computing a Directional Derivative 

If ),( yxfz =  is a differentiable function of x  and y  and jiu θθ sincos += , then 
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Proof: 
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        ),()(sin),()(cos yxfyxf yx θθ +=  
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Similarly, 
For a function ),,( zyxFw =  the directional derivative is defined by 
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where γβα ,,  are the direction angles of the vector u  relative to the positive zyx ,, axes, 
respectively. 
 
Maximum Value of the Directional Derivative 

φφ coscos fuffDu ∇=∇= , )1( =u  

where φ  is the angle between f∇  and u  

1cos10 ≤≤−==>≤≤ φπφ  

fff ∇≤∇≤∇− φcos  

ffDf u ∇≤≤∇−  

ffDu ∇=     u  has the same direction as f∇ . 

ffDu ∇−=    u  and f∇ have opposite direction. 
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(From http://omega.albany.edu:8008/calc3/directional-derivatives-dir/define-m2h.html) 

 

The partial derivative ),( 00 yxf y  is a special case of a directional derivative. 

Consider a smooth function of two variables: ),( yxfz =  
the partial derivative of ),( yxfz =  with respect to y  at the point ),( 00 yx  is denoted by 

),( 00 yxf y . Geometrically the number ),( 00 yxf y  is the slope of the tangent line at the point 

),,( 000 zyx  to a curve on the surface ),( yxfz = . This curve is the intersection of the plane 

0xx =  with the surface ),( yxfz = . 
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Also,  
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