Engineering Mathematics II---Quiz-3

April 28, 2006

1) Consider the function $f=x^{2} y^{4}$. At (1,1) what is:
(1) The rate of change of $f=x^{2} y^{4}$ in the direction of \vec{i} ? (5 scores)
(2) The rate of change of $f=x^{2} y^{4}$ in the direction of $\vec{i}+\vec{j}$? (5 scores)
2) Find the indicated expression for the vector field $\vec{F}=x^{2} y \vec{i}+2 x y z \vec{k}$
(1) $\nabla \cdot \vec{F}$,
, (2) $\nabla \times \vec{F}$, (3) $\nabla \cdot(\nabla \times \vec{F})$, (4)
(4) $\nabla(\nabla \cdot \vec{F})$
(15 scores)
3) $\vec{F}=\frac{y}{x^{2}+y^{2}} \vec{i}-\frac{x}{x^{2}+y^{2}} \vec{j}$; Evaluate $\oint_{C} \vec{F} \cdot d r$
(1)C is shown as Fig1(a). (Hint: Using direct integral) (5 scores)
(2)C is shown as Fig1(b). (Hint: Using Green's theorem) (5 scores)
(3) C is shown as Fig1(c). (Hint: Using Green's theorem) (5 scores)

Fig. 1(a)

Fig. 1(b)

Fig. 1(c)
4) Suppose $\vec{r}(t)=2 t \vec{i}+\left(t^{3}-2 t\right) \vec{j}+\left(t^{2}-5 t\right) \vec{k}$ is the position vector of a moving particle. What are its speed, velocity, acceleration, curvature and tangent line at the point $(0,0,0)$? (15 scores)
5) S is the portion of the plane $x+2 y+3 z=12$ in the first octant.
(1) find the area of S (5 scores)
(2) find the upper unit normal of S (5 scores)
(3) Evaluate $\iint_{S}\left(3 z^{2}+4 y z\right) d S \quad$ (10 scores)
6) If S is the surface of the region bounded by $x^{2}+y^{2}=9, z=\sqrt{16-x^{2}-y^{2}}$, $z=0 . \quad \vec{F}=-y^{3} \stackrel{\rightharpoonup}{i}-x^{3} \stackrel{\rightharpoonup}{j}+z^{3} \vec{k}$
(1) find the volume of the solid bounded by $x^{2}+y^{2}=9, z=\sqrt{16-x^{2}-y^{2}}$, $z=0$. (10 scores)
(2) use the divergence theorem to find the outward flux $\iint_{S}(\vec{F} \cdot \vec{n}) d S$ (15 scores)

