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Abstract

Closed form expressions for the Green function of flexural vibrations of uniform beams are well known, giving the response at any pointin
the beam due to harmonic point excitation at any position along the beam. The expressions involve trigonometric and hyperbolic functions.
The present work first develops alternative forms for the free—free beam, in terms of the sinusoidal eigenmodes of a pinned—pinned beam
plus the rigid body modes. Convergence is assessed by comparison with the well-known classical results for a free—free beam. The analysis is
then extended to the case of free—free rectangular plates of arbitrary aspect ratio. The work is motivated by the desirability of employing
sinusoidal modes for the structure when undertaking hydroelastic analysis (e.g. for a flexible beam or plate floating in@20s#x).
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1. Introduction For concept design and developing an understanding of
the hydroelastic phenomena, it is more convenient to adopt
There is great current interest in developing design proce- classical methods of analysis where possible. Short wave-
dures for floating islands. These would be very large struc- length assumptions, for example, may be invoked to
tures that would be inherently rather flexible: the prime simplify the hydrodynamics (e.g. Ohkusu and Namba [5],
example of this is the floating plate. Analysis of the wave- Hermans [6]). The structural model may be simplified by
induced dynamics of such a plate brings together the studyconsidering the case of a homogeneous rectangular plate of
of hydrodynamics and structural mechanics, in the disci- uniform thickness. The vibration behaviour may be charac-
pline of hydroelasticity. This paper is motivated by the terised by that of such a plate with free—free boundary
need to extend the classical results from vibration theory conditions. The mode shapes can then in principle be used
into a framework that can conveniently encompass the directly in the coupled hydroelastic analysis by solving the
hydrodynamic analysis. hydrodynamic radiation problems corresponding to the
Detailed design of such structures will inevitably require various modal displacements; or by forming the Green func-
complex numerical analysis, and progress is being made intion corresponding to the structural response to a harmoni-
developing appropriate hydrodynamic representations cally oscillating point load on the plate. The latter approach
which could be coupled with finite element models of the is adopted here, as explained in Section 2.
structure. Because of the large horizontal dimensions of, Whereas for a beam the free—free modes are well known
say, a floating airport, conventional panel methods may be and simple to write down, no such simple forms are known
an unwieldy way of treating the hydrodynamics, and various for a free—free plate. One approach used in some of the
alternatives are under development (e.g. Utsunomiya et al.above-mentioned investigations is to use a sum of products
[1], Kashiwagi [2], Ohkusu and Namba [3], Kagemoto et al. of the free—free beam modes (associated with behaviour in
[4], and several others in the Proceedings of the Interna-the directions of the orthogonal axes of the rectangular
tional Workshop on Very Large Floating Structures, plate). Although each term in the series does not satisfy
Hayama, Japan, 1996). the full set of boundary conditions for the free—free plate,
the idea is to use sufficient terms in the series that a satis-
mponding author. Tel.:+44-1865-273002; fax:+44-1865- fathry. reprgsentation of the plate dynamics is Obtaineq in
273010. the limit. This may be the case when an energy formulation
E-mail addressr.eatocktaylor@eng.ox.ac.uk (R Eatock Taylor). is used (e.g. to satisfy the natural boundary conditions
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implicitly), but not generally. Herein lies the motivation for w. Furthermore, the plate is excited by the dynamic
this paper. Furthermore, the free—free beam modes are nopressurep.
in fact convenient to use when large numbers of modes need Without dwelling at this stage on the specific elastic char-
to be included, and satisfactory convergence is difficult to ateristics of the plate, we may state that its equation of
achieve. motion is of the general form

Our approach, instead, is to use sinusoidal modes in
combination with the rigid body modes of the plate. This
has the advantage of very easy computation, and the possiwhere the operatdr involves the elastic and inertial proper-
ble benefits that may ensue from combining a Fourier repre- ties. This provides the dynamic boundary condition o&er
sentation of the structural Green function with an for the boundary value problem satisfied #y
appropriate hydrodynamic analysis. To lay out the basis of The kinematic boundary condition linking the plate and
the approach, we first examine in detail the implications of fluid over the interface\ is
expressing the free—free beam modes themselves as a sung &
of sinusoids plus the rigid body modes. In Section 3, we —— = jow 3)
briefly recapitulate the classical analysis of the Green func- 9z
tion for the beam. Next, in Section 4, we develop series (where the time variation is assumed to be proportional to
forms involving summations of sinusoids plus the two exp iwt).
rigid body modes of the beam, using two different  The dynamic pressure may be written in terms of the
approaches. The first is a direct formulation, applying the velocity potential as
Stokes transformation (Chen et al. [7]). This clarifies how .
the boundary conditions specifying zero shear at each end® = ~lopd 4
can be satisfied when the third derivative of each sinusoidal wherep is the density of the fluid. Hence we would have all
term in the summation for the deflected shape of the beam isthe ingredients required to solve Eq. (1) directly darif we
itself non-zero. (In effect, the Stokes transformation deals could reformulate Eq. (2) to expresadirectly in terms ofp
with the Gibbs phenomenon in the Fourier series expression(or ¢).
for the shear). The second method outlined in Section 4 is  This last step is achieved through use of the plate Green
the use of an energy approach to obtain the Green functionfynction 9p(%, x"; y, ¥'). By appropriately defining the para-

for the beam. This paves the way for using a similar meters (as described below), we can write the solution of
approach, in Section 7, for the free—free plate. Numerical Eq. (2) as

results are given to demonstrate convergence: results for the
beam are provided in Section 6, and for the plate in W:JJ pg, dA. (5)
Section 8. A

Lw=p, e

Finally, by making the substitutions in Eq. (1), we obtain
the required integral equation for the potential:

1
¢>+w2” [w—;»” ¢gpdA’]Gf dA=d¢,  (©
The moativation for focussing here on the plate Green AL9 A

function may be illustrated by summarising how it arises where we have also used the condition satisfied by the fluid
in the hydroelastic analysis. Suppose we are concerned withGreen function orz= 0, namely

the linear response of a flexible plate to incident waves of
frequencyw. It is convenient to introduce a time harmonic G _ G =0 (7
velocity potentiakp corresponding to the resulting flow, and 92 g
the associated incident wave potential The thin plate of Once Eq. (6) is solved, it is straightforward to obtain

areaA is supposed to lie in the plare=0, where we are o (ransverse displacement of the plate, by substituting the
using a co_qrdlnate system located in the mean free surfacegq tion into Eq. (4) and then Eq. (5). One of the present
with 2 positive upwards. . , , authors has numerically solved the two-dimensional version
We first introduce the usual fluid Green functiGix; X) ot £q. (6) to obtainw for a long plate in oblique waves [5].
corresponding to a time harmonic unit wave source. It iS Tha results forw computed up to the frequency given by
then easy to show that the total potentialsatisfies the wz/ng 40w (B being the plate width) were computed
following integral equation: using a plate Green function given as products of hyberbolic
3G ¢ functions [8].
¢+ JJ b— dA= JJ Gi— dA + ¢. Q) The key to the analysis is seen to lie in having an effective
A0z A 02 means to evaluate the coupling integral

¢, however, and in particular¢/dz in the second integral, b: JJ JJ $6Gr dA dA.
A A

2. The plate Green function in the hydroelastic context

®)

depends on the transverse displacement of the plate, denote
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It is this which has motivated the development below of a 3
simple functional form for the plate Green functigp o~ 0 ax=0L 12

It is well known that such a Green function can in prin-
ciple be expressed in terms of the modes of vibration of the Milne [12] has given a general formulation for all possible
plate. Previous investigations have sought to approximateboundary conditions of a uniform beam, from which we
the modes and corresponding frequencies of a free—freemay extract the solution corresponding to free—free end
plate. Leissa [9] used the known free—free beam modes,conditions as follows:
based on the approach mentioned in the previous section

. 3.4 oy
Bardell [10] used products of Legendre polynomials inxthe 4EIB7(1 = coshpL cospL)g(x: X)

andy di_re_ctions, coupled with th_e cubic shape functions fo_r = (coshpL — cosBLIE;(OE(L — X') + Ex(E;(L — X)]
beam finite elements, to approximate the natural frequencies

of plates with a variety of edge conditions, including all — sinh BLIE;(XEL (L — X') + Ex(XEy(L — X)]

edges free. Beslin and Nicolas [11] pointed out that the

polynomial approach was badly conditioned numerically, — sin BLIE;(WE; (L — X') — Ex(XE,(L — X)),

if one were seeking natural frequencies corresponding to

very high modes, or highly converged results. These authorsO = X = X'; (13)

developed an alternative approach based on trigonometric
functions, and showed that over 2000 terms in the serieswhere
could be used in each direction without any numerical
problems. Each term in each direction, however, involves
a product of two trigonometric terms.

The method described below uses products of single Ex(X) = coshpBx + cospBx.
trigonometric terms, which seems to be more convenient
for developing the plate Green function (which does not
appear to have been tackled by the afore-mentioned
authors). Furthermore, such simple series would seem to
be very appropriate for use in the complex intedraéfined
above.

E1(X) = sinh Bx + sin BX,

The solution foix’ = x < L is obtained by exchangingand

(L — x) in the various terms of Eq. (13). Itis apparent that at
high frequencies (large values Bf these expressions are
badly conditioned, and they may be written in an alternative
form by first extracting the term exB(). This procedure
for improving the accuracy of calculation at high frequency
has been described by Beshara [13].

3. The closed form expression for the free—free beam

By way of introduction to our approach, we first investi- 4. Alternative forms of Green function for the beam
gate the simpler case of the free—free beam. We consider a
uniform beam of length., mass per unit lengtmand flex-  4.1. Direct derivation of an appropriate series form
ural rigidity El. The analysis is based on Euler—Bernoulli
beam theory, so that effects of shear deformations and rotary We start by considering the solution to Eq. (9) in the form
inertia are ignored. The transverse deflection of the beam is

v(x, t), wheret is time and the coordinateis measured from  v(x,t) = Z PO, (X) + Vl(t)<1 — 5) + vz(t)(§>,
the left-hand end of the beam. Under a load per unit length n=1 L L (1%
f(x, t), the deflection of the beam satisfies the equation.
0=x=L.
a%v FRY _
El Fv + m-z = f. ) We use the modes of a simply supported beam, taken as

We define the Green functiog(x; x'), as the deflection at Pr(X) = Sin (@)
corresponding to a point loa®(x — x') of unit amplitude at " L /)

o . .
frequencyw at position, 3(x) being the Dirac delta func- and deffinev,(t) andv,(t) as the deflections at the left and

. o it
tion. Thusg(x; x) satisfies right-hand ends, respectively, of the free—free beam. While
d'g a1 ; Eq. (14) satisfies the conditions of zero moment at each end
od p9= ES(X —X) 10 of the free—free beam, it is clear that a non-trivial solution

a2 . o satisfying the conditions of zero shear is not achieved by
where 8" = mw’/EI. Applying the boundary conditions of direct differentiation of this equation, term-by-term. To

Sveer%glzment and shear at each end of the free—free bearTE)vercome this problem, associated with the Gibbs phenom-

enon in Fourier series, we may use the Stokes transforma-
d’g tion for differentiation of the series. The approach has been
e 0 atx=0L 1D described by Chen et al. [7] in the context of structural
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dynamics. The starting point is to write with

n 2 L 8 " " L n !
PUI(t) = (7)(5) V" O 0TS + Pty = Pt).

V(X t) = len(t)wn(x), 0<x<L (15) i
(26)

with () as defined above, and the corresponding relation
In obtaining Eg. (24) we have used the zero moment bound-

ary condition onv(x, t).

Next we integrate Eq. (25) four times with respectxto
using the zero moment boundary conditions to eliminate the
The series differentiation by Stokes transformation leads to two arbitrary constants thereby introduced. We impose the
zero shear conditions subsequently. This leads to:

2 L
Pa(t) = T > V06 D) O (16)
0

VXt = ; PrO¥n(0 17) « X

vt = w01 7 ) + w07 ) + 3 PR
where the prime on the functions wtiesignates differentia- =t

tion with respect tok, and we define (following Chen et al. Lo X i 2 /nmx
7 = v (1) ( - —)— —sm(—) + V(1)
[7D) L) & L
Pho = ¢ )2 | VX 000 o 2 2
"O=T\5) oV 0¥ ()3 ot Zain( ")
0 x[ - ngl( o —sin| =
2(L\?
= L5z ) e ool + Poco, (18 - .
4 + D Pq(t) sin - (27)
To obtain the last expression, we have used Eq. (16) and the n=1
result
The summations in the square brackets are of course simply
n_ (0T 2 (19 the Fourier series for the two rigid body modes, given by the
¥n= L Y- first term in each set of square brackets. Hence, the contents

Inserting the values at= 0, L and the definition ot} (x),
we thus obtain

Pht) = — 3[v1 + (=D o] + Po(d). (20
nir

We continue to differentiate the series in this manner,

obtaining the following:

of these brackets are zero foOx < L, but for any finite
number of terms in the series they have the desired property
of being non-zero at the ends. By this means, we are able to
satisfy the zero shear boundary conditions when we use the
series of modes for a simply supported beam.

4.2. Solution for the coefficients in the series

We obtainvy, v, andP, corresponding to the Green func-

V(% t) = Z PhOYHX) 21 tion by first substituting Eq. (27) into the equation of motion
n=1 (10), and by taking
with v(x, 1) = g(x; X') coswt; P,(t) = P, cosat, etc
2 L 4 . . . .
Pl(t) = <_)(_> V(% D015 + PLt) = PLt); (22) It is convenient, however, to omit the overbar in the
L/\nw following.
We multiply the resulting equation by,,(x), and inte-
o grate over the length of the beam. This yields
VI = 3 PROY" (0 23 »
n=1 n'a 2
P e |- e
with nm
m 2 L\° I n L " ! = i sin nmx’ (28)
PY(t) = (E)(E) V(% DLO0TS + PAH) = Pht; (24) = S — )
and noting that the terms in the square brackets of Eq. (27) do
. not contribute to the distributed inertia term (theandv,
V(X t) = Z P )" (x) (25) parts do, however, contribute to the s_tiffness_ term, since at
=i this stage we can use term-by-term differentiation). Hence,
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we obtain
IDr‘l = n4 — I-L4 [ ;n [Vl + (_1)n+ VZ]
2 L . (nuX
S 29
El S'n( L )] @9

where we defing. through

. Mo ot
P~ <0

Next we substitute Eq. (29) into Eq. (27), leading to

N 218 i 1 sinf ™) sin nmx’
mEl = n* — ut L L /)
(3D

From the zero shear boundary conditionxat 0 we
obtain

- n2M4 n+1
D s — v; + (=D,
n=1
3 3 !
n L . [ nmx
+ sin =0 32
n* — u* 73El ( L )} (32

and the corresponding conditionat= L yields

A+l n2,u,4 AN+l
> (-1 i ala D]

n=1

3 3 /
n L . nmX
+ T sm( 3 )} =0. (33

These two equations are to be solvedvpandv,, and it is
convenient to introduce the following definitions:

A, — 2 i(_l)n+1 n2M4 .
- T n* —ut’

(34

2 &yt
A1=—Z 7 i
T

2& nax’
n_ % : X
QX)) = E P — 2 sm( ] )

T =1

22 n° nmx’
n_ % _qyn+l i .
Qux) = = n; s T

All of these series may be summed up in closed form. We
proceed as follows. Taking

© 1 /~L4 /~L4
A=Y= + , 36
' n_lﬂ[nz—nz n* + p? 9

we may use a result in Bromwich ([14], p. 36):

coshu6
T — .
sinh um

(37

* (—1)"2u? cosnd
14y D awcosnd
n=1

n? + ;1,2
Replacingb by = in Eqg. (37) we obtain
00 2

1 ™
Z nzﬁ:— 2 =" + % coth w; (38
n=1

and replacingu by iw in Eq. (38) we obtain

2

ke s 1 uw
= - — — cotum. 39
n;nz_Mz 5 — o5 cotum (39)

This leads immediately to

3
o

A= ?(coth i — cot u). (40

In a similar manner, replacing by 0 in Eq. (37), we can
obtain

_ 3
A, = T(cosechmr — cosecum). (41

Itis convenient to retain the summationnandQ,, but
in the following form. We have

2& nax’
n_ 2 )
Ql(x)—1T E v 4sm( 3 )

or

N 2 wt _f nmx!
Q1(X)—(1 T)Jr;nzln(n“—,u“) sm( - )

(43

where the first sum has been closed by again using Brom-
wich ([14], p. 188). Similarly we find

" X/ 2 (_1)n+1M4 . n’]TXI
Q(x) = (f) + ;n;n(n“——w‘) sin| —— ) 44
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Egs. (32) and (33) are now written in the form
3

L
Avy + AV, = ———Qy(X) (45)
El
L3 .
Ay + AV = — ——Qu(X). (46)
°El
The solution may be readily found as
L3
Vi = —g=[@1Qu(X) + axQa(x)], (47)
m°El
L3
Vo = —g=r[aQu(X) + a1 Qa(x)], (48)
mEl
where
= — 1 cosum sinhpw — coshum sinu
e ul coshum cosum — 1 ’
. _ (49
1 sinuw —sinhuw
Oy =

48 coshum cospm — 1

These may also be written in alternative forms suited to
evaluation at high frequencies. We define

p = exp(—um) (50
and express, a, as follows:
oL (1 - p?) cospm — (L + p°) sinpm
e ud (1+ p?) cosum — 2p ’
(51
1 2psinum — (1 - p?)
Ay = —

ud (1+ p?) cospum — 2p

Substituting Egs. (47) and (48) into Eqg. (31), and noting
the definition forQ, andQ, in Egs. (43) and (44), we obtain:
3

gx;x) = Bl

{[alQﬂx’) + a,Qx(X)1Q1(X)

2.8 nmx’
> L

™ n=1

+ —

7

n* — u?

+ [aQu(X) + a1 Qa(X)]Qx(X)
nmx )}

sin il sin
i i i
(52

This is the required form of the Green function obtained by
the Stokes transformation. We designate this “series form
A, to distinguish it from that derived in Section 4.3. It may
be noted that the expression fiik, x') is symmetric inx and
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definitions ofQ, and Q, (Egs. (43) and (44)) all converge
very fast. It may be anticipated that this form will have
satisfactory numerical characteristics, with the possible
exception of frequencies close to the natural frequencies
of the simply supported beam(i.e« — n). This can be
checked through numerical experiments, and is discussed
below.

4.3. Derivation by the energy method

We now apply classical energy methods to obtain the
coefficients in the series form of the deflection. Starting
from Hamilton’s principle, and assuming harmonic excita-
tion and response, it is easy to derive the variational form

SU-T+V)=0, (53
where for the uniform beam
El (- () m ,(*
U—7 O(y) dX, T—Ew JOVZdX,
(54)

L
V= —J fv dx.

0

We use this for the case of the unit point load on the beam,
introducing the definitions given earlier, and taking the
deflection of the beam in the simple series form given in
Eqg. (14). Performing the integrations, we obtain

El 4 402
U= s S (55)
1 1 1
T= szmLig(\/zl‘i‘VlVQ +V§)+ ng Epﬁ
+y 2 V1 + Vo(—D)" P, (56)
a nm 1 2 n
Ve v -, X - §m b sin( ™™ (57)
- 1 2 L = n .

Taking the variation with respect to the unknown coeffi-
cientsvy, v, and P,,, we can write the resulting equations
in the matrix form

x’, and there is no need to distinguish between the cases

x < x andx > x'.
It is easy to verify that this expression gives the usual tip
receptances for the free—free beam. Thus,

3

L L
09(0;0) = ﬁal; ago;L) = ﬁaz

We also note that the series in Eqg. (52), and those in the

3

(K —p'M)Q=F (58)
where
Q'=[v; Vv, P; P,..P..I; (59)
! . X' . 27X’ . nmx’
Fz[l — sm(T) sm( )...sm( 3 )]
(60)
o ek L ]
= : M = ) (61)
O Kpp Mp, Mpp
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The non-zero terms of the symmetric submatrices are characteristic example is that of a free—free plate or beam
obtained from: subject to a distributed load which decreases monotonically
from one end (say the left-hand emd= 0 for the beam).

_ 2.
M = 5 This is related to the envelope of the wave force associated

1 with diffraction of free surface waves encountering a float-
Mz = 33 ing beam.

To fix ideas, we assume a parabolic load distribution of
Moz = : the form
2 2-x), 0<x=c

Mypn = > g f(x) = 203( ) (63

n 0, c<x<L
Myopn = Z i(_l)nﬂ; Thus, the force per unit length reduces to zergatc, and

n nm the total load is always unity for any value @flt is easy to

show that this may be expressed as the Fourier series
Mpnpn = 1; ©
Ay
foo=> Fy sm(%x), (64
Kpnpn = n’. n=1
For the beam it is possible to solve this infinite set of Where
equations exactly, by noting that the variation with respect 3r1 2 2
: Fo=—]— — —=siny, + —-(1 —cos 6

to Pn y|e|ds n L[ Yo % N yn ﬁ( 'Yn)] ( 5)

4 /

N 2 1 2 [ nmx and
Pn: n4—M4|:rm(vl+(_l)n+ V2)+ rnLa)ZSW](l)] e 66
62 T (66

Substitution of this into the other two equations, and  The response of the beam to the distributed load, varying
summation of the infinite series using the definitions for With time at frequencyw, is written in terms of the Green
A; andA, in Eq. (34) andQ; andQ, in Egs. (43) and (44),  function as
leads directly to Eqgs. (45) and (46). It is important to note, L
however, that in the energy approach we have started fromVa(X) = J g%, xHf (x) dx’ (67)
the deflected shape given by Eq. (14), whereas in arriving
before at Egs. (45) and (46), we used the extended form ofwhereg(x; x') is given by Eq. (52). Noting that
v(x,t) given in Eq. (27). This is because the natural boundary
conditions on shear are satisfied implicitly by the energy (
formulation.

It is of course also possible, and convenient, to solve for
Q by direct inversion of the matrix Eq. (58), truncated at a JL XL f(x') dx = 3c
finite number of terms in the series, and hence to obtain anJo 8L’
approximation to the Green function. We identify this
approach as “series form B”.

In Section 6, we compare numerical results from the two L3
series formulations of the Green function with the exact Va®) = ﬁ[(ww + a;V2)Qi(X) + (apVy + a3 V2)Qo(X)
solution. First, however, we summarise the step from the
Green function to the response to a distributed load. L & = _ (m-r )]

X M =1 3 €
I_)f(x)dx-l sl

we readily obtain

5. Application to a beam with a distributed load (68)

One of the aims of this analysis is to have the Green Where

function in a form which can simply be used in a hydroe- 3¢ &L 4

. . . . _ M
lastic analysis, where the fluid problem is represented by Vi = (1 T8l " D o F ) (69
some distribution of load on the flexible structure. Rather n=1 ®

than solve the complete coupled problem here, we illustrate . nil 4
the convenience of the present approach when the hydro—v § c + Z LEY F. (70)
dynamic load has been expressed as a Fourier series. A 8L
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x10° G(x.0.2), Freq=3.5 G(x,0.2), Freq=3.75
3

Displacement
Displacement

) 0.5 1 0 0.5 1
position along beam position along beam
G(x,0.2), Freq=4 G(x,0.2), Freq=4.25
10
= g
Q @
£ =
[9] [0]
[$] o
RS =
Qo Q
1] @2
(=] o
- -1
1% 0.5 1 % 0.5 1
position along beam position along beam
Fig. 1. Convergence of the Green function for the beam with number of terms in the series: N=4;)(- - - )N=6; (——— )N = 8; (—) closed form
solution.
It may be noted that form result is seen to be satisfactory, both near the free—
)2 free beam third natural frequency (Fig. 1a); near the fourth
limF, = [1 — 2(1 _ oy ) simply supported beam natural frequency (Fig. 1c); and at
0 n 6 points well separated from either of these frequencies. The

very close proximity to the free—free beam resonance
+ 2(} _ ﬁ + )] = 0(c) accounts for the very large values in Fig. l1a. It is clear
2 24 that taking four terms in the series is insufficient in this
. . range of frequencies, whereas 8 terms yield converged
and_ therefore the standard tip receptances are again .. its to within plotting accuracy.
retrieved. . .
Next, we examine convergence at much higher frequen-
cies. Fig. 2a—d shows results from the series solution at
6. Numerical results for the beam frequencies corresponding ta — e = 9.50, 9.75, 10.00
and 10.25 and forx’ = 0.25. These include behaviour
In the following, we plot the dimensionless quantities very close to the ninth free—free beam natural frequency
(m3El/L3gx; x') and (w°El/L%)v4(x) against non-dimen-  and the tenth natural frequency of the simply-supported
sional distance along the beardl. The choice ok’ is not beam. The four lines in each figure correspond to results
important in the assessment of accuracy, and we have usedrom 8, 12, 16 and 20 terms in the series. Convergence
x' = 0.2l and 0.25in the following. First, we compare the seems to be satisfactory. A rough rule of thumb would
closed form expression and series form A for the Green appear to be that one should use twice as many terms as
function over a range of frequencies. The natural frequen- the indexn defining the nearest simply supported beam

cies of the simply supported beam correspong.ttaking resonant frequency (in this case 10), to obtain results within
integer valuesn say, and those of the free—free beam corre- plotting accuracy.

spond very closely tgm + 1/2) (the sequence is 1.50562, These results have used series form A for the Green
2.49975, 3.50001, ...). Fig. 1a—d shows resultscfes 0.2 function, which uses the Stokes transformation and closures

andu — e = 3.50, 3.75, 4.00 and 4.25, wheeeis taken as of certain infinite series. We now examine results from
10"° to avoid the precise singularities at the frequencies of the much simpler approach of series form B, based on the
the simply supported beam. In each of these figures theenergy formulation leading to Eqg. (58). Fig. 3 shows the
result from the closed form expression, Eq. (13), is shown Green functions using the different methods, at a frequency
with the continuous lines; the discontinous lines show the corresponding tqu = 7.75. Fig. 3a and b are fof =0,
convergence of the series form with 4, 6 and 8 terms, respec-while Fig. 3c and d are fox'/L = 0.25. Each figure shows
tively. The convergence of the series form to the closed three curves: the solid line is obtained from the exact
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Fig. 2. Convergence of the Green function for the beam with number of terms in the series: N=28;)(- - - )N=12; (——-— N=16; (—)N=20.

solution, Eq. (13); the dashed—dotted line is from series slightly faster than form B, but both converge satisfactorily
form A; and the dashed line is from series form B. Fig. 3a to within plotting accuracy for a number of terms equal to
and c uses 8 terms in the series solutions, and 12 terms ardéwice the mode number of the nearest natural frequency
used for the results in Fig. 3b and d. One observes from (mode 7 in this case). We also note that there is no particular
these and other similar results that series form A convergesdifficulty in obtaining convergence with either method even

G(x,0), Freq=7.75 G(x,0), Freq=7.75
50

G (8 terms)
G (12 terms)
o

0 0.5 1 % 05 1
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Fig. 3. Green functions for the beam: (—) closed form solution; (—-—-— ) series form A; (— — —) series f6(m 8). for: (a) 8 terms and (b) 12 terms in the

series;G(x, 0.25) for: (c) 8 terms and (d) 12 terms in the series.
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Fig. 4. The Green function#( * * *) and the displacement due to a parabolically varying loagt ¢ +) over a lengtlc = 0.1L of the beam: (aj = 1; (b)
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when the point load is at the end of the beam. Additional the corresponding distributed load (plotted with the’)’

results confirm that the natural frequencies and mode shapesnd the Green function for a point load &¥L = 0.1.

of the free—free beam converge equally satisfactorily. The Green function is calculated from the closed form
Finally, we illustrate the analysis for a distributed load expression (the solid line), and the series A solution

such as discussed in Section 5. Figs. 4—8 give results for thewith 20 terms (plotted with the #’). It may be seen

five casex/L = 0.1, 0.3, 0.5, 0.7 and 0.9. For each case, that, as expected, at low frequencies the results for the

results are given at 8 frequencies, corresponding toe = parabolic load distributed over the lengith = 0.3 are very

1, 2, ... 8. Each figure shows the displacem#fi) under close to the Green function for a load ®fL = 0.1. At
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higher frequencies, however, the effect of distributing corresponding mode shape. (cf. Figs. 1a and 2a for the
the load is to increase the participation of many more third and ninth modes, respectively).

modes (since these results are not at the resonances of the

free—free beam). This has an averaging effect, which

reduces the degree of oscillation along the beam. If, 7. Derivation of the green function for the plate

however, the vibration frequency corresponds to a reso-

nance of the free—free beam, of course the response to the We now develop the Green function for a free-free plate,
distributed load and the Green function both match the basing the procedure on the energy method analogous to the
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derivation of the series form B in the case of the beam. (It andy = Y/b. Assuming that the plate is thin so that shear
does not appear at all straightforward to obtain for the plate deformations are negligible, we use the standard strain energy

the equivalent of series form A). expression:

We define axe®©XYdirected along two adjacent edges of 1 2 2 N2 P
the plate, and define the transverse deflectiom(sy) — as U= D J J [r (a_w) 1 (a_w) ,,a_W ow
in Section 4.3, we have factored out the time dependence for 2ab Jo Jo S rz\ ay? N ay?

harmonic response. The length and breadth of the plate are
andb, respectively, and we define the aspect ratio byb/a.

2
ER
X . ; : : +2(1 - — dx dy, 71
It is convenient to use non-dimensional coordinates X/a ( V)< axay) ] * %y (71)
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whereD is the flexural rigidity andv is Poisson’s ratio. The  loadf(x,y) is:

kinetic energy, ignoring rotary inertia, is: 11
V= —abj J fw dx dy, (73
0Jo
T= %wZ),abJ'l J'lw2 dx dy, (72) where to obtain the Green function we take
0Jo
f(xy) = 8(x = x)&(y — y. (74

wherevy is the mass per unit area. The potential of an applied For the deflected shape of the plate, we use an analogous
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expression to the simple formulation in Eq. (14) for the This contains the rigid body modes explicitly, sinusoidal

beam, i.e.

W= Co+ CiX + Gy + CaXy + > [Ugm(1—Y)
m

+ Uqmy] sinmmx + Z [Vom(1 — X) + ViX] Sinmmry

m

+ Z ZPmn Sin mmx
m n

sinnary. (75)

modes in each direction, and cross terms. In obtaining
numerical results, the series will be truncated appropriately.

Performing the integrations, and applying the variational
principle as stated in Eqg. (53), we again obtain Eq. (58)
where now the matrices take the following forms:

QT:[QC QuO Qul QVO Qvl QP]a (76)
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where

Qc=I[C € & c3l,
Quu=1I[u1 Up ..],

Quu=1[vi1 Vo ...],

Quo =[Uo1 Ug

Quw=1[Vor Vo2

0 (77

Qp=I[P11 P ... Pu Py .|
FXY)' =[F. Fwo Fu Fw Fu Fpl (79
where
Fe=[1xYy XYyl
Fuo = (1 — y)[sinax sin 2nx’.. ],
Fu1 = Y[sinmx’ sin 2mx’...],
Fvo = (1 — X)[sinwy’ sin 2ry’.. ],
Fy1 = X/[sinmy’ sin 2wy’ ],
Fp = [sinmx’ sinwy’  sinmx’ sin 2my’ ...
sin 2nx’ sinwy’  sin 2xx’ sin 2wy’ ];
"Kee O 0 0 0 0 -
0 Kwow Koot Kuow Koot Kuop
K — D|O KIom Kuu Kuw Kuv Kue .
abf o Kioo Kino Ko Kuou Kwp |
0 Kiu Kl Klou Kua Kup
L0 Kip Kip Kip Kip Kpp
(79
and
_Mcc MCLO Mcul Mch MC\/l McP 7]
MILO MuOuO Iv'uOul MuOvO MuOvl Iv'uOP
M ab Ml—ul M-urOul I\/lulul MulvO IVlulvl IVIulP
=Y
Mao Mino Mino Mwow Mon Myp
Mis Miox Mima Ml My Myp
LM Mip Mip Mip Mip Mpp
(80

The submatrices are given by

000 0
000 O
“““lo oo o [
000 21—

Kuomwon = [§7*m*r? + (1 — »)mPm?]18my;
Kuomunm = [ﬁ"""lm‘lrz -(1- v)szrZ]Smm;
Kumuanm = [%’IT“mAI’Z +d- V)mZTFZ]5mm;

2 2 .
Kuomon = vmmn Kutmwon = v MnNep;

_ 2 . _ 2 .
Kuoman = VT MNEp; Kutmvin = T MN€mp;

4
n
4 2 2
KvOn\,On’ == [%’TT riz + (1 - V)n m ]8nn/;

4
n
4 2 2
Kyvoman' = [ﬁ’rr 7 1= v)n°“ ] 6nys

4
n
4 2 2
Kvln\/ln’ — [%T r—z + (1 - V)n ™ ]Snn/;

Kuompmn = 2 n +wn

()

e [ mer?
Kuimpmn = > |\ n + N |ep;

n’m ( n?
KvOn’Pmn = T ( —r + Vm),

’m
n’m ( n?
Kvinpmn = 2 \ 2 + vm | ey
0y 2\?
_ 2 .
KPn’{n’Pmn - Z (rm + _) 8mm6nn”
1 1 1
1 2 32 3
1 1 1 1
2 3 4 6
M — .
ce 11 1 1/
2 4 3 6
i1 1 1
4 6 6 9
1+ ey
Mcovom = o = Mcouims
1+ e,
Mcovon = 2 = Mcovims
€m
Mciuom = nm = Mciuims
1+ e,
Mcwon = 6nm 5
1+ e,
M = ;

3nm
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Table 1

Non-dimensional natural frequencies, versus number of Fourier harmonics in each directidyrfor a square free—free plate

R. Eatock Taylor, M. Ohkusu / Applied Ocean Research 22 (2000) 295-314

2

Oy Os Og a7 Og 09 010 011 012 013
2 13.20 19.38 25.51 35.17 35.17 63.36 63.36 68.68 69.15 81.97
4 13.18 19.33 24.63 34.42 34.42 61.43 61.43 63.10 68.58 77.85
8 13.18 19.29 24.50 34.34 34.34 61.15 61.15 62.92 68.48 77.30
16 13.17 19.26 24.46 34.29 34.29 61.04 61.04 62.85 68.35 77.13
32 13.17 19.24 24.44 34.26 34.26 60.99 60.99 62.81 68.25 77.05
Meouon = 1+ ém . Myonvon' = %5nn’ = Myinvan's
ceun 6mm
_ 1 )
1+ ¢ MvOnvln’ - E6nn”
m
Meouin = 3 5
nm 1 €n
€ Muorvpmn = o Omnt; Mutrvpmn = 2nm Omnt's
n
Mcavon = > = Mcavn:
n
M ~ s M = M S
€ vOn'Pmn — 5 _—— ©nn'» vin'Pmn — 5 __—— ©nn'»
Mcauom = =——: 2mm 2mm
6mm
— 1 .
€ MPmnPn‘ln’ - Zamm‘snn’a
_ _fm .
Mesuam = 3mm’ wheres,, is the Kronecker delta, and
€n €m = _(_1)m.
Mc3v0n = 6 s e .
nm Based on these definitions fé, M and F, we may then
€ solve Eq. (58) foiQ, truncating at finite values oh andn
Mcavin = 3’ corresponding to the sinusoidal terms in thandy direc-
tions. Hence, we obtain the plate Green function as
A+ e + &) I\ T A1 1y A/
McOPmrFT; g y; xLy) = F (X YK — w'M] “F(X,y). (81
a ) We may also solve the generalised eigenvalue problem
en(l+ €,
Mcipmn e K — u*M]Q=0 (82)
1+ ee, to obtain the natural frequencies and mode shapes for the
M = . late.
c2Pmn mn_‘_rz p
= Emén . 8. Numerical results for the plat
Mczpmn = v . Numerical results for the plate
M _ 15 —M ) We consider first the natural frequencies and mode shapes
/= = = /5 .
vomom’ == g Cmmt ulmutny of the free—free plate, based on the above formulation. We
M _ig . take » = 0.333 for all of the results shown here. Table 1
vomutn/ == 7 Omn'> shows predictions of the first ten non-zero natural frequen-
1 c cies for a square plate, using 2, 4, 8, 16 and 32 harmonics in
Muomon = ——5 Muomin = —'; the Fourier series in each direction. Thus with eight terms,
mnm mnm ;
for example, there are 100 unknowns in the ve€oiThe
€, €mn frequencies are expressed in non-dimensional fora as
Mutmon = mne2’ Mutman = mne2’ wib®/y/D, wherei = 1, 2, 3 correspond to the first three
Table 2

Non-dimensional natural frequencies, versus number of Fourier harmonics in each directidrfor a free—free platéb/a = 5)

N Oy 05

2 21.68 60.58
4 21.30 59.12
8 21.22 58.85
16 21.19 58.75
32 21.17 58.70

Og
63.63
63.46
63.43
63.43
63.42

g7
145.45
119.3
116.1
115.9
115.8

Og 09 010 011 012 013
227.0 566.9 583.2 643.5 735.9 1576.2
131.0 198.6 205.2 315.8 415.3 559.8
130.3 193.0 203.8 287.0 290.4 381.8
130.2 192.6 203.6 286.2 288.8 380.6
130.2 192.4 203.5 286.1 288.5 380.3
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rigid body modes. Table 2 shows equivalent results for a plate. It may be seen that, as expected, mode 5 is excited
rectangular plate with/a = 5. In both cases, the conver- (o5 = 19.24 from Table 1), except when the load is on
gence is seen to be satisfactory. The results for the squarghe diagonal of the square which is a nodal line for this
plate computed with 32 harmonics in each direction are mode.
within about 0.1% of those tabulated by Gorman and Wei
Din [15], based on a superposition approach for the thin
plate problem. The first 16 modes in each case are showng. Discussion
in Figs. 9 and 10, respectively, including the rigid body
modes. These results are based on using eight terms in This analysis has led first to a form of Green function for
each direction, though the results based on 32 terms arethe free—free beam which is based on a sum of modes for a
almost indistinguishable. Also shown in these figures are simply supported beam plus the two rigid body modes. The
all the components of the vect@ for each mode plotted  two approaches adopted (selection of a series to satisfy the
(which has 100 elements for the representation with 8 conditions of the boundary values problem directly, and use
harmonics in each direction: 4 fay, 32 for the terms iru of an energy formulation which satisfies the natural bound-
and v, and 64 for theP,,). It should be noted that the ary conditions implicitly) have both been shown to be very
isometrics and contour plots in Fig. 10 are shown on a satisfactory. Numerical results suggest that the series
square, because the spatial dimensions have been noneonverge rapidly. For example, at frequencies in the region
dimensionalised by the sides of the plate. The beam- of thenth resonant frequency of the simply supported beam,
type behaviour folb/a =5 is, however, clearly apparent about 2terms are required in the series to obtain the Green
inmodes 4,5, 7,9, 12 and 14. On the other hand, when scaledunction for the free—free beam. The series form may be
to the square, modes 6 and 8 of the rectangular plate clearlyused without difficulty at very high frequencies, without the
correspond to modes 4 and 7 for the square plate. This mayspecial treatment required in the case of the closed form
also be observed in the components@f Furthermore, expression corresponding to the free—free beam.
it is seen that for the first 16 modes, in either case, the terms The second approach has then been used for the thin
Pmn do not contribute greatly (though their effect is not plate. Natural frequencies and mode shapes for square and
negligible). rectangular free—free plates have been evaluated, and it has
A sample of Green functions for the free—free square been found that with 8 sinusoidal terms in each direction the
plate is shown in Fig. 11, for a non-dimensional frequency first 13 modal frequencies are within 0.5% of the converged
o =20.00. The nine plots show the values of the Green results. Green functions for the plate have also been
function G(x,y") = g(x,y,x,y") corresponding to nine obtained, which also appear to have satisfactory conver-
positions (x',y") of a point load in one quadrant of the gence characteristics.

G(0.00,0.00) G(0.00,0.25) G(0.00,0.50)

Fig. 11. Green functions for free—free plate (squarey at 20.00.
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