
Green functions for hydroelastic analysis of vibrating free–free
beams and plates

R. Eatock Taylora,* , M. Ohkusub

aDepartment of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
bResearch Institute for Applied Mechanics, Kyushu University, 6-1 Kasuga-koen, Kasuga City, Fukuoka 816, Japan

Abstract

Closed form expressions for the Green function of flexural vibrations of uniform beams are well known, giving the response at any point in
the beam due to harmonic point excitation at any position along the beam. The expressions involve trigonometric and hyperbolic functions.
The present work first develops alternative forms for the free–free beam, in terms of the sinusoidal eigenmodes of a pinned–pinned beam
plus the rigid body modes. Convergence is assessed by comparison with the well-known classical results for a free–free beam. The analysis is
then extended to the case of free–free rectangular plates of arbitrary aspect ratio. The work is motivated by the desirability of employing
sinusoidal modes for the structure when undertaking hydroelastic analysis (e.g. for a flexible beam or plate floating in the sea).q 2000
Elsevier Science Ltd. All rights reserved.
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1. Introduction

There is great current interest in developing design proce-
dures for floating islands. These would be very large struc-
tures that would be inherently rather flexible: the prime
example of this is the floating plate. Analysis of the wave-
induced dynamics of such a plate brings together the study
of hydrodynamics and structural mechanics, in the disci-
pline of hydroelasticity. This paper is motivated by the
need to extend the classical results from vibration theory
into a framework that can conveniently encompass the
hydrodynamic analysis.

Detailed design of such structures will inevitably require
complex numerical analysis, and progress is being made in
developing appropriate hydrodynamic representations
which could be coupled with finite element models of the
structure. Because of the large horizontal dimensions of,
say, a floating airport, conventional panel methods may be
an unwieldy way of treating the hydrodynamics, and various
alternatives are under development (e.g. Utsunomiya et al.
[1], Kashiwagi [2], Ohkusu and Namba [3], Kagemoto et al.
[4], and several others in the Proceedings of the Interna-
tional Workshop on Very Large Floating Structures,
Hayama, Japan, 1996).

For concept design and developing an understanding of
the hydroelastic phenomena, it is more convenient to adopt
classical methods of analysis where possible. Short wave-
length assumptions, for example, may be invoked to
simplify the hydrodynamics (e.g. Ohkusu and Namba [5],
Hermans [6]). The structural model may be simplified by
considering the case of a homogeneous rectangular plate of
uniform thickness. The vibration behaviour may be charac-
terised by that of such a plate with free–free boundary
conditions. The mode shapes can then in principle be used
directly in the coupled hydroelastic analysis by solving the
hydrodynamic radiation problems corresponding to the
various modal displacements; or by forming the Green func-
tion corresponding to the structural response to a harmoni-
cally oscillating point load on the plate. The latter approach
is adopted here, as explained in Section 2.

Whereas for a beam the free–free modes are well known
and simple to write down, no such simple forms are known
for a free–free plate. One approach used in some of the
above-mentioned investigations is to use a sum of products
of the free–free beam modes (associated with behaviour in
the directions of the orthogonal axes of the rectangular
plate). Although each term in the series does not satisfy
the full set of boundary conditions for the free–free plate,
the idea is to use sufficient terms in the series that a satis-
factory representation of the plate dynamics is obtained in
the limit. This may be the case when an energy formulation
is used (e.g. to satisfy the natural boundary conditions
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implicitly), but not generally. Herein lies the motivation for
this paper. Furthermore, the free–free beam modes are not
in fact convenient to use when large numbers of modes need
to be included, and satisfactory convergence is difficult to
achieve.

Our approach, instead, is to use sinusoidal modes in
combination with the rigid body modes of the plate. This
has the advantage of very easy computation, and the possi-
ble benefits that may ensue from combining a Fourier repre-
sentation of the structural Green function with an
appropriate hydrodynamic analysis. To lay out the basis of
the approach, we first examine in detail the implications of
expressing the free–free beam modes themselves as a sum
of sinusoids plus the rigid body modes. In Section 3, we
briefly recapitulate the classical analysis of the Green func-
tion for the beam. Next, in Section 4, we develop series
forms involving summations of sinusoids plus the two
rigid body modes of the beam, using two different
approaches. The first is a direct formulation, applying the
Stokes transformation (Chen et al. [7]). This clarifies how
the boundary conditions specifying zero shear at each end
can be satisfied when the third derivative of each sinusoidal
term in the summation for the deflected shape of the beam is
itself non-zero. (In effect, the Stokes transformation deals
with the Gibbs phenomenon in the Fourier series expression
for the shear). The second method outlined in Section 4 is
the use of an energy approach to obtain the Green function
for the beam. This paves the way for using a similar
approach, in Section 7, for the free–free plate. Numerical
results are given to demonstrate convergence: results for the
beam are provided in Section 6, and for the plate in
Section 8.

2. The plate Green function in the hydroelastic context

The motivation for focussing here on the plate Green
function may be illustrated by summarising how it arises
in the hydroelastic analysis. Suppose we are concerned with
the linear response of a flexible plate to incident waves of
frequencyv . It is convenient to introduce a time harmonic
velocity potentialf corresponding to the resulting flow, and
the associated incident wave potentialf I. The thin plate of
areaA is supposed to lie in the planez� 0, where we are
using a coordinate system located in the mean free surface
with z positive upwards.

We first introduce the usual fluid Green functionG(x; x 0)
corresponding to a time harmonic unit wave source. It is
then easy to show that the total potentialf satisfies the
following integral equation:

f 1
ZZ

A
f
2Gf

2z
dA�

ZZ
A

Gf
2f

2z
dA 1 fI : �1�

f , however, and in particular2f=2z in the second integral,
depends on the transverse displacement of the plate, denoted

w. Furthermore, the plate is excited by the dynamic
pressure,p.

Without dwelling at this stage on the specific elastic char-
ateristics of the plate, we may state that its equation of
motion is of the general form

Lw� p; �2�
where the operatorL involves the elastic and inertial proper-
ties. This provides the dynamic boundary condition overA
for the boundary value problem satisfied byf .

The kinematic boundary condition linking the plate and
fluid over the interfaceA is

2f

2z
� ivw �3�

(where the time variation is assumed to be proportional to
exp iv t).

The dynamic pressure may be written in terms of the
velocity potential as

p� 2ivrf �4�
wherer is the density of the fluid. Hence we would have all
the ingredients required to solve Eq. (1) directly forf , if we
could reformulate Eq. (2) to expressw directly in terms ofp
(or f ).

This last step is achieved through use of the plate Green
functiongp(x, x0; y, y0). By appropriately defining the para-
meters (as described below), we can write the solution of
Eq. (2) as

w�
ZZ

A
pgp dA: �5�

Finally, by making the substitutions in Eq. (1), we obtain
the required integral equation for the potential:

f 1 v2
ZZ

A

1
g
f 2 r

ZZ
A
fgp dA0

� �
Gf dA� fI ; �6�

where we have also used the condition satisfied by the fluid
Green function onz� 0, namely

2Gf

2z
2

v2

g
Gf � 0: �7�

Once Eq. (6) is solved, it is straightforward to obtainw,
the transverse displacement of the plate, by substituting the
solution into Eq. (4) and then Eq. (5). One of the present
authors has numerically solved the two-dimensional version
of Eq. (6) to obtainw for a long plate in oblique waves [5].
The results forw computed up to the frequency given by
v2

=gB� 40p (B being the plate width) were computed
using a plate Green function given as products of hyberbolic
functions [8].

The key to the analysis is seen to lie in having an effective
means to evaluate the coupling integral

I �
ZZ

A

ZZ
A
fgpGf dA0 dA: �8�
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It is this which has motivated the development below of a
simple functional form for the plate Green functiongp.

It is well known that such a Green function can in prin-
ciple be expressed in terms of the modes of vibration of the
plate. Previous investigations have sought to approximate
the modes and corresponding frequencies of a free–free
plate. Leissa [9] used the known free–free beam modes,
based on the approach mentioned in the previous section.
Bardell [10] used products of Legendre polynomials in thex
andy directions, coupled with the cubic shape functions for
beam finite elements, to approximate the natural frequencies
of plates with a variety of edge conditions, including all
edges free. Beslin and Nicolas [11] pointed out that the
polynomial approach was badly conditioned numerically,
if one were seeking natural frequencies corresponding to
very high modes, or highly converged results. These authors
developed an alternative approach based on trigonometric
functions, and showed that over 2000 terms in the series
could be used in each direction without any numerical
problems. Each term in each direction, however, involves
a product of two trigonometric terms.

The method described below uses products of single
trigonometric terms, which seems to be more convenient
for developing the plate Green function (which does not
appear to have been tackled by the afore-mentioned
authors). Furthermore, such simple series would seem to
be very appropriate for use in the complex integralI defined
above.

3. The closed form expression for the free–free beam

By way of introduction to our approach, we first investi-
gate the simpler case of the free–free beam. We consider a
uniform beam of lengthL, mass per unit lengthm and flex-
ural rigidity EI. The analysis is based on Euler–Bernoulli
beam theory, so that effects of shear deformations and rotary
inertia are ignored. The transverse deflection of the beam is
v(x, t), wheret is time and the coordinatex is measured from
the left-hand end of the beam. Under a load per unit length
f(x, t), the deflection of the beam satisfies the equation.

EI
24v

2x4 1 m
22v

2t2
� f : �9�

We define the Green function,g(x; x0), as the deflection atx
corresponding to a point loadd (x 2 x0) of unit amplitude at
frequencyv at positionx0, d (x) being the Dirac delta func-
tion. Thusg(x; x0) satisfies

d4g

dx4 2 b4g� 1
EI

d�x 2 x0� �10�

whereb4 � mv2
=EI: Applying the boundary conditions of

zero moment and shear at each end of the free–free beam
we have

d2g

dx2 � 0 at x� 0;L; �11�

d3g

dx3 � 0 at x� 0;L: �12�

Milne [12] has given a general formulation for all possible
boundary conditions of a uniform beam, from which we
may extract the solution corresponding to free–free end
conditions as follows:

4EIb3�1 2 coshbL cosbL�g�x; x0�
� �coshbL 2 cosbL��E1�x�E2�L 2 x0�1 E2�x�E1�L 2 x0��

2 sinhbL�E1�x�E1�L 2 x0�1 E2�x�E2�L 2 x0��
2 sinbL�E1�x�E1�L 2 x0�2 E2�x�E2�L 2 x0��;

0 # x # x0; (13)

where

E1�x� � sinhbx 1 sinbx;

E2�x� � coshbx 1 cosbx:

The solution forx0 # x # L is obtained by exchangingx and
(L 2 x0) in the various terms of Eq. (13). It is apparent that at
high frequencies (large values ofb ) these expressions are
badly conditioned, and they may be written in an alternative
form by first extracting the term exp(bL). This procedure
for improving the accuracy of calculation at high frequency
has been described by Beshara [13].

4. Alternative forms of Green function for the beam

4.1. Direct derivation of an appropriate series form

We start by considering the solution to Eq. (9) in the form

v�x; t� �
X∞
n�1

Pn�t�cn�x�1 v1�t� 1 2
x
L

� �
1 v2�t� x

L

� �
;

0 # x # L:

�14�

We use the modes of a simply supported beam, taken as

cn�x� � sin
npx
L

� �
;

and deffinev1(t) andv2(t) as the deflections at the left and
right-hand ends, respectively, of the free–free beam. While
Eq. (14) satisfies the conditions of zero moment at each end
of the free–free beam, it is clear that a non-trivial solution
satisfying the conditions of zero shear is not achieved by
direct differentiation of this equation, term-by-term. To
overcome this problem, associated with the Gibbs phenom-
enon in Fourier series, we may use the Stokes transforma-
tion for differentiation of the series. The approach has been
described by Chen et al. [7] in the context of structural
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dynamics. The starting point is to write

v�x; t� �
X∞
n�1

Pn�t�cn�x�; 0 , x , L �15�

with cn(x) as defined above, and the corresponding relation

Pn�t� � 2
L

XL
0

v�x; t�cn�x� dx: �16�

The series differentiation by Stokes transformation leads to

v0�x; t� �
X∞
n�1

P0n�t�c 0n�x� �17�

where the prime on the functions ofx designates differentia-
tion with respect tox, and we define (following Chen et al.
[7])

P0n�t� � 2
L

L
np

� �2ZL

0
v0�x; t�c 0n�x� dx

� 2
L

L
np

� �2

�v�x; t�c 0n�x��L0 1 Pn�t�: �18�

To obtain the last expression, we have used Eq. (16) and the
result

c 00n � 2
np
L

� �2

cn: �19�

Inserting the values atx� 0, L and the definition ofcn�x�;
we thus obtain

P0n�t� � 2
2

np
�v1 1 �21�n11v2�1 Pn�t�: �20�

We continue to differentiate the series in this manner,
obtaining the following:

v00�x; t� �
X∞
n�1

P00n�t�c 00n�x� �21�

with

P00n�t� � 2
L

� �
L

np

� �4

�v0�x; t�c 00n�x��L0 1 P0n�t� � P0n�t�; �22�

v000�x; t� �
X∞
n�1

P000n �t�c 000�x� �23�

with

P000n �t� � 2
L

� �
L

np

� �6

�v00�x; t�c 000n �x��L0 1 P00n�t� � P0n�t�; �24�

and

v0000�x; t� �
X∞
n�1

P0000n �t�c 0000n �x� �25�

with

P0000n �t� � 2
L

� �
L

np

� �8

�v000�x; t�c 0000n �x��L0 1 P000n �t� � P0n�t�:
�26�

In obtaining Eq. (24) we have used the zero moment bound-
ary condition onv(x, t).

Next we integrate Eq. (25) four times with respect tox,
using the zero moment boundary conditions to eliminate the
two arbitrary constants thereby introduced. We impose the
zero shear conditions subsequently. This leads to:

v�x; t� � v1�t� 1 2
x
L

� �
1 v2�t� x

L

� �
1
X∞
n�1

P0n�t�cn�x�

� v1�t� 1 2
x
L

� �
2
X∞
n�1

2
np

sin
npx
L

� �" #
1 v2�t�

� x
L

� �
2
X∞
n�1

�21�n11 2
np

sin
npx
L

� �" #

1
X∞
n�1

Pn�t� sin
npx
L

: (27)

The summations in the square brackets are of course simply
the Fourier series for the two rigid body modes, given by the
first term in each set of square brackets. Hence, the contents
of these brackets are zero for 0, x , L; but for any finite
number of terms in the series they have the desired property
of being non-zero at the ends. By this means, we are able to
satisfy the zero shear boundary conditions when we use the
series of modes for a simply supported beam.

4.2. Solution for the coefficients in the series

We obtainv1, v2 andPn corresponding to the Green func-
tion by first substituting Eq. (27) into the equation of motion
(10), and by taking

v�x; t� � g�x; x0� cosvt; Pn�t� � �Pn cosvt; etc:

It is convenient, however, to omit the overbar in the
following.

We multiply the resulting equation bycm�x�; and inte-
grate over the length of the beam. This yields

n4p4

L4 Pn 2 �v1 1 �21�n11v2� 2
np

� �
2 b4Pn

� 2
EIL

sin
npx0

L

 !
; �28�

noting that the terms in the square brackets of Eq. (27) do
not contribute to the distributed inertia term (thev1 andv2

parts do, however, contribute to the stiffness term, since at
this stage we can use term-by-term differentiation). Hence,
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we obtain

Pn � 1
n4 2 m4

"
2
p

n3�v1 1 �21�n11v2�

1
2
p

L3

p3EI
sin

 
npx0

L

!#
�29�

where we definem through

b4 � mv2

EI
� m4p4

L4 : �30�

Next we substitute Eq. (29) into Eq. (27), leading to

g�x; x0� � v1

( 
1 2

x
L

!
1
X∞
n�1

2
np

sin

 
npx
L

!

�
"

2 1 1
n4

n4 2 m4

#)

1 v2

( 
x
L

!
1
X∞
n�1

2
np
�21�n11 sin

 
npx
L

!

�
"

2 1 1
n4

n4 2 m4

#)

1
2L3

p4EI

X∞
n�1

1
n4 2 m4 sin

 
npx
L

!
sin

 
npx0

L

!
:

�31�
From the zero shear boundary condition atx� 0 we

obtain

X∞
n�1

(
n2m4

n4 2 m4 �v1 1 �21�n11v2�

1
n3

n4 2 m4

L3

p3EI
sin

 
npx0

L

!)
� 0 �32�

and the corresponding condition atx� L yields

X∞
n�1

�21�n11

(
n2m4

n4 2 m4 �v1 1 �21�n11v2�

1
n3

n4 2 m4

L3

p3EI
sin

 
npx0

L

!)
� 0: �33�

These two equations are to be solved forv1 andv2, and it is
convenient to introduce the following definitions:

A1 � 2
p

X∞
n�1

n2m4

n4 2 m4 ; A2 � 2
p

X∞
n�1

�21�n11 n2m4

n4 2 m4 ;

�34�

Q1�x0� � 2
p

X∞
n�1

n3

n4 2 m4 sin
npx0

L

 !
;

Q2�x0� � 2
p

X∞
n�1

�21�n11 n3

n4 2 m4 sin
npx0

L

 !
:

�35�

All of these series may be summed up in closed form. We
proceed as follows. Taking

A1 �
X∞
n�1

1
p

m4

n2 2 m2 1
m4

n2 1 m2

" #
; �36�

we may use a result in Bromwich ([14], p. 36):

1 1
X∞
n�1

�21�n2m2 cosnu

n2 1 m2 � mp
coshmu
sinhmp

: �37�

Replacingu by p in Eq. (37) we obtain

X∞
n�1

m2

n2 1 m2 � 2
1
2

1
mp

2
cothmp; �38�

and replacingm by im in Eq. (38) we obtain

X∞
n�1

m2

n2 2 m2 �
1
2

2
mp

2
cotmp: �39�

This leads immediately to

A1 � m3

2
�cothmp 2 cotmp�: �40�

In a similar manner, replacingu by 0 in Eq. (37), we can
obtain

A2 � 2m3

2
�cosechmp 2 cosecmp�: �41�

It is convenient to retain the summations inQ1 andQ2, but
in the following form. We have

Q1�x0� � 2
p

X∞
n�1

n3

n4 2 m4 sin
npx0

L

 !

� 2
p

X∞
n�1

1
n

1 1
m4

n4 2 m4

 !
sin

npx0

L

 !
; �42�

or

Q1�x0� � 1 2
x0

L

 !
1

2
p

X∞
n�1

m4

n�n4 2 m4� sin
npx0

L

 !
�43�

where the first sum has been closed by again using Brom-
wich ([14], p. 188). Similarly we find

Q2�x0� � x0

L

 !
1

2
p

X∞
n�1

�21�n11m4

n�n4 2 m4� sin
npx0

L

 !
: �44�
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Eqs. (32) and (33) are now written in the form

A1v1 1 A2v2 � 2
L3

p3EI
Q1�x0� �45�

A2v1 1 A1v2 � 2
L3

p3EI
Q2�x0�: �46�

The solution may be readily found as

v1 � L3

p3EI
�a1Q1�x0�1 a2Q2�x0��; �47�

v2 � L3

p3EI
�a2Q1�x0�1 a1Q2�x0��; �48�

where

a1 � 2
1
m3

cosmp sinhmp 2 coshmp sinmp

coshmp cosmp 2 1
;

a2 � 2
1
m3

sinmp 2 sinhmp
coshmp cosmp 2 1

:

�49�

These may also be written in alternative forms suited to
evaluation at high frequencies. We define

r � exp�2mp� �50�
and expressa1, a2 as follows:

a1 � 2
1
m3

�1 2 r2� cosmp 2 �1 1 r2� sinmp

�1 1 r2� cosmp 2 2r
;

a2 � 2
1
m3

2r sinmp 2 �1 2 r2�
�1 1 r2� cosmp 2 2r

:

�51�

Substituting Eqs. (47) and (48) into Eq. (31), and noting
the definition forQ1 andQ2 in Eqs. (43) and (44), we obtain:

g�x; x0� � L3

p3EI

(
�a1Q1�x0�1 a2Q2�x0��Q1�x�

1 �a2Q1�x0�1 a1Q2�x0��Q2�x�

1
2
p

X∞
n�1

1
n4 2 m4 sin

 
npx
L

!
sin

 
npx0

L

!)
:

�52�
This is the required form of the Green function obtained by
the Stokes transformation. We designate this “series form
A”, to distinguish it from that derived in Section 4.3. It may
be noted that the expression forg�x; x0� is symmetric inx and
x0; and there is no need to distinguish between the cases
x , x0 andx . x0:

It is easy to verify that this expression gives the usual tip
receptances for the free–free beam. Thus,

g�0; 0� � L3

p3EI
a1; g�0; L� � L3

p3EI
a2:

We also note that the series in Eq. (52), and those in the

definitions ofQ1 andQ2 (Eqs. (43) and (44)) all converge
very fast. It may be anticipated that this form will have
satisfactory numerical characteristics, with the possible
exception of frequencies close to the natural frequencies
of the simply supported beam(i.e.m! n�: This can be
checked through numerical experiments, and is discussed
below.

4.3. Derivation by the energy method

We now apply classical energy methods to obtain the
coefficients in the series form of the deflection. Starting
from Hamilton’s principle, and assuming harmonic excita-
tion and response, it is easy to derive the variational form

d�U 2 T 1 V� � 0; �53�
where for the uniform beam

U � EI
2

ZL

0

d2v

dx2

 !2

dx; T � m
2
v2
ZL

0
v2 dx;

V � 2
ZL

0
fv dx:

�54�

We use this for the case of the unit point load on the beam,
introducing the definitions given earlier, and taking the
deflection of the beam in the simple series form given in
Eq. (14). Performing the integrations, we obtain

U � EI

4L3

X
n

n4p4P2
n; �55�

T � 1
2
v2mL

(
1
3
�v2

1 1 v1v2 1 v2
2�1

X
n

1
2

P2
n

1
X
n

2
np
�v1 1 v2�21�n11�Pn

)
�56�

V � 2v1 2 v2
x0

L
2
X∞
n�1

Pn sin
npx0

L

 !
: �57�

Taking the variation with respect to the unknown coeffi-
cientsv1, v2 and Pn, we can write the resulting equations
in the matrix form

�K 2 m4M �Q � F �58�
where

QT � �v1 v2 P1 P2…Pn…�; �59�

F � 1
x0

L
sin

px0

L

 !
sin

2px0

L

 !
…sin

npx0

L

 !
…

" #
;

�60�

K �
O O

O KPP

" #
; M �

M vv M vP

MPv MPP

" #
: �61�
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The non-zero terms of the symmetric submatrices are
obtained from:

Mv1v1 � 2
3 ;

Mv1v2 � 1
3 ;

Mv2v2 � 2
3 ;

Mv1Pn �
X
n

2
np

;

Mv2Pn �
X
n

2
np
�21�n11;

MPnPn� 1;

KPnPn� n4
:

For the beam it is possible to solve this infinite set of
equations exactly, by noting that the variation with respect
to Pn yields

Pn � m4

n4 2 m4

2
np
�v1 1 �21�n11v2�1

2
mLv2 sin

npx0

l

 !" #
:

�62�
Substitution of this into the other two equations, and
summation of the infinite series using the definitions for
A1 andA2 in Eq. (34) andQ1 andQ2 in Eqs. (43) and (44),
leads directly to Eqs. (45) and (46). It is important to note,
however, that in the energy approach we have started from
the deflected shape given by Eq. (14), whereas in arriving
before at Eqs. (45) and (46), we used the extended form of
v(x,t) given in Eq. (27). This is because the natural boundary
conditions on shear are satisfied implicitly by the energy
formulation.

It is of course also possible, and convenient, to solve for
Q by direct inversion of the matrix Eq. (58), truncated at a
finite number of terms in the series, and hence to obtain an
approximation to the Green function. We identify this
approach as “series form B”.

In Section 6, we compare numerical results from the two
series formulations of the Green function with the exact
solution. First, however, we summarise the step from the
Green function to the response to a distributed load.

5. Application to a beam with a distributed load

One of the aims of this analysis is to have the Green
function in a form which can simply be used in a hydroe-
lastic analysis, where the fluid problem is represented by
some distribution of load on the flexible structure. Rather
than solve the complete coupled problem here, we illustrate
the convenience of the present approach when the hydro-
dynamic load has been expressed as a Fourier series. A

characteristic example is that of a free–free plate or beam
subject to a distributed load which decreases monotonically
from one end (say the left-hand endx� 0 for the beam).
This is related to the envelope of the wave force associated
with diffraction of free surface waves encountering a float-
ing beam.

To fix ideas, we assume a parabolic load distribution of
the form

f �x� �
3

2c3 �c2 2 x2�; 0 , x # c

0; c , x , L

8><>: �63�

Thus, the force per unit length reduces to zero atx� c, and
the total load is always unity for any value ofc. It is easy to
show that this may be expressed as the Fourier series

f �x� �
X∞
n�1

Fn sin
npx
L

� �
; �64�

where

Fn � 3
L

1
gn

2
2
g2

n
singn 1

2
g3

n
�1 2 cosgn�

� �
�65�

and

gn � npc
L

: �66�

The response of the beam to the distributed load, varying
with time at frequencyv , is written in terms of the Green
function as

vd�x� �
ZL

0
g�x; x0�f �x0� dx0 �67�

whereg�x; x0� is given by Eq. (52). Noting thatZL

0
1 2

x0

L

 !
f �x0� dx0 � 1 2

3
8

c
L
;

ZL

0

x0

L

 !
f �x0� dx0 � 3

8
c
L
;

we readily obtain

vd�x� � L3

p3EI

"
�a1V1 1 a2V2�Q1�x�1 �a2V1 1 a1V2�Q2�x�

1
L
p

X∞
n�1

Fn

n4 2 m4 sin

 
npx
L

!#
�68�

where

V1 � 1 2
3
8

c
L

1
X∞
n�1

L
np

m4

n4 2 m4 Fn

 !
; �69�

V2 � 3
8

c
L

1
X∞
n�1

L
np
�21�n11m4

n4 2 m4 Fn

 !
: �70�
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It may be noted that

lim
c!0

Fn � 3
Lgn

"
1 2 2

 
1 2

g2
n

6
1 …

!

1 2

 
1
2

2
g2

n

24
1 …

!#
� O�c�

and therefore the standard tip receptances are again
retrieved.

6. Numerical results for the beam

In the following, we plot the dimensionless quantities
�p3EI=L3�g�x; x0� and �p3EI=L3�vd�x� against non-dimen-
sional distance along the beam,x/l. The choice ofx0 is not
important in the assessment of accuracy, and we have used
x0 � 0:2l and 0.25l in the following. First, we compare the
closed form expression and series form A for the Green
function over a range of frequencies. The natural frequen-
cies of the simply supported beam correspond tom taking
integer values,msay, and those of the free–free beam corre-
spond very closely to�m1 1=2� (the sequence is 1.50562,
2.49975, 3.50001, …). Fig. 1a–d shows results forx0 � 0:2l
andm 2 e � 3:50; 3.75, 4.00 and 4.25, wheree is taken as
1026 to avoid the precise singularities at the frequencies of
the simply supported beam. In each of these figures the
result from the closed form expression, Eq. (13), is shown
with the continuous lines; the discontinous lines show the
convergence of the series form with 4, 6 and 8 terms, respec-
tively. The convergence of the series form to the closed

form result is seen to be satisfactory, both near the free–
free beam third natural frequency (Fig. 1a); near the fourth
simply supported beam natural frequency (Fig. 1c); and at
points well separated from either of these frequencies. The
very close proximity to the free–free beam resonance
accounts for the very large values in Fig. 1a. It is clear
that taking four terms in the series is insufficient in this
range of frequencies, whereas 8 terms yield converged
results to within plotting accuracy.

Next, we examine convergence at much higher frequen-
cies. Fig. 2a–d shows results from the series solution at
frequencies corresponding tom 2 e � 9:50; 9.75, 10.00
and 10.25 and forx0 � 0:25l: These include behaviour
very close to the ninth free–free beam natural frequency
and the tenth natural frequency of the simply-supported
beam. The four lines in each figure correspond to results
from 8, 12, 16 and 20 terms in the series. Convergence
seems to be satisfactory. A rough rule of thumb would
appear to be that one should use twice as many terms as
the indexn defining the nearest simply supported beam
resonant frequency (in this case 10), to obtain results within
plotting accuracy.

These results have used series form A for the Green
function, which uses the Stokes transformation and closures
of certain infinite series. We now examine results from
the much simpler approach of series form B, based on the
energy formulation leading to Eq. (58). Fig. 3 shows the
Green functions using the different methods, at a frequency
corresponding tom � 7.75. Fig. 3a and b are forx0 � 0;
while Fig. 3c and d are forx0=L � 0:25: Each figure shows
three curves: the solid line is obtained from the exact
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Fig. 1. Convergence of the Green function for the beam with number of terms in the series: (– – –)N� 4; (· · ·)N� 6; (–·–·–)N� 8; (—) closed form
solution.



solution, Eq. (13); the dashed–dotted line is from series
form A; and the dashed line is from series form B. Fig. 3a
and c uses 8 terms in the series solutions, and 12 terms are
used for the results in Fig. 3b and d. One observes from
these and other similar results that series form A converges

slightly faster than form B, but both converge satisfactorily
to within plotting accuracy for a number of terms equal to
twice the mode number of the nearest natural frequency
(mode 7 in this case). We also note that there is no particular
difficulty in obtaining convergence with either method even
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Fig. 3. Green functions for the beam: (—) closed form solution; (–·–·–) series form A; (– – –) series form B.G(x, 0) for: (a) 8 terms and (b) 12 terms in the
series;G(x, 0.25) for: (c) 8 terms and (d) 12 terms in the series.

Fig. 2. Convergence of the Green function for the beam with number of terms in the series: (– – –)N� 8; (· · ·)N� 12; (–·–·–)N� 16; (—) N� 20.



when the point load is at the end of the beam. Additional
results confirm that the natural frequencies and mode shapes
of the free–free beam converge equally satisfactorily.

Finally, we illustrate the analysis for a distributed load
such as discussed in Section 5. Figs. 4–8 give results for the
five casesc=L � 0:1; 0.3, 0.5, 0.7 and 0.9. For each case,
results are given at 8 frequencies, corresponding tom 2 e �
1; 2, … 8. Each figure shows the displacementV(x) under

the corresponding distributed load (plotted with the ‘1’)
and the Green function for a point load atx0=L � 0:1:
The Green function is calculated from the closed form
expression (the solid line), and the series A solution
with 20 terms (plotted with the ‘p ’). It may be seen
that, as expected, at low frequencies the results for the
parabolic load distributed over the lengthc=L � 0:3 are very
close to the Green function for a load atx0=L � 0:1: At
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Fig. 4. The Green function (p p p p ) and the displacement due to a parabolically varying load (1111) over a lengthc� 0.1L of the beam: (a)m � 1; (b)
m � 2; (c)m � 3; (d)m � 4; (e)m � 5; (f) m � 6; (g)m � 7; (h)m � 8.



higher frequencies, however, the effect of distributing
the load is to increase the participation of many more
modes (since these results are not at the resonances of the
free–free beam). This has an averaging effect, which
reduces the degree of oscillation along the beam. If,
however, the vibration frequency corresponds to a reso-
nance of the free–free beam, of course the response to the
distributed load and the Green function both match the

corresponding mode shape. (cf. Figs. 1a and 2a for the
third and ninth modes, respectively).

7. Derivation of the green function for the plate

We now develop the Green function for a free-free plate,
basing the procedure on the energy method analogous to the
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Fig. 5. The Green function (p p p p ) and the displacement due to a parabolically varying load (1111) over a lengthc� 0.3L of the beam: (a)m � 1; (b)
m � 2; (c)m � 3; (d)m � 4; (e)m � 5; (f) m � 6; (g)m � 7; (h)m � 8.



derivation of the series form B in the case of the beam. (It
does not appear at all straightforward to obtain for the plate
the equivalent of series form A).

We define axesOXYdirected along two adjacent edges of
the plate, and define the transverse deflection asw(X,Y) — as
in Section 4.3, we have factored out the time dependence for
harmonic response. The length and breadth of the plate area
andb, respectively, and we define the aspect ratio byr � b=a:
It is convenient to use non-dimensional coordinatesx� X=a

and y� Y=b: Assuming that the plate is thin so that shear
deformations are negligible, we use the standard strain energy
expression:

U � D
2ab

Z1

0

Z1

0

"
r2

 
22w

2x2

!2

1
1
r2

 
22w

2y2

!2

12n
22w

2x2

22w

2y2

1 2�1 2 n�
 

22w
2x2y

!2#
dx dy; (71)
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Fig. 6. The Green function (p p p p ) and the displacement due to a parabolically varying load (1111) over a lengthc� 0.5L of the beam: (a)m � 1; (b)
m � 2; (c)m � 3; (d)m � 4; (e)m � 5; (f) m � 6; (g)m � 7; (h)m � 8.



whereD is the flexural rigidity andn is Poisson’s ratio. The
kinetic energy, ignoring rotary inertia, is:

T � 1
2
v2gab

Z1

0

Z1

0
w2 dx dy; �72�

whereg is the mass per unit area. The potential of an applied

loadf(x,y) is:

V � 2ab
Z1

0

Z1

0
fw dx dy; �73�

where to obtain the Green function we take

f �x; y� � d�x 2 x0�d�y 2 y0�: �74�
For the deflected shape of the plate, we use an analogous
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Fig. 7. The Green function (p p p p ) and the displacement due to a parabolically varying load (1111) over a lengthc� 0.7L of the beam: (a)m � 1; (b)
m � 2; (c)m � 3; (d)m � 4; (e)m � 5; (f) m � 6; (g)m � 7; (h)m � 8.



expression to the simple formulation in Eq. (14) for the
beam, i.e.

w� c0 1 c1x 1 c2y 1 c3xy1
X
m

�u0m�1 2 y�

1 u1my� sin mpx 1
X
m

�v0m�1 2 x�1 v1mx� sinmpy

1
X
m

X
n

Pmn sinmpx sinnpy: (75)

This contains the rigid body modes explicitly, sinusoidal
modes in each direction, and cross terms. In obtaining
numerical results, the series will be truncated appropriately.

Performing the integrations, and applying the variational
principle as stated in Eq. (53), we again obtain Eq. (58)
where now the matrices take the following forms:

QT � �Qc Qu0 Qu1 Qv0 Qv1 QP �; (76)
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Fig. 8. The Green function (p p p p ) and the displacement due to a parabolically varying load (1111) over a lengthc� 0.9L of the beam: (a)m � 1; (b)
m � 2; (c)m � 3; (d)m � 4; (e)m � 5; (f) m � 6; (g)m � 7; (h)m � 8.



where

Qc � � c0 c1 c2 c3 �; Qu0 � � u01 u02 …�; �77�

Qu1 � � u11 u12 …�; Qv0 � � v01 v02 …�;

Qv1 � � v11 v12 …�;
QP � �P11 P12 … P21 P22 …�;

F�x0y0�T � �Fc Fu0 Fu1 Fv0 Fv1 FP �; �78�
where

Fc � �1 x0 y0 x0y0�;

Fu0 � �1 2 y0��sinpx0 sin 2px0…�;

Fu1 � y0�sinpx0 sin 2px0…�;

Fv0 � �1 2 x0��sinpy0 sin 2py0…�;

Fv1 � x0�sinpy0 sin 2py0…�;

FP � �sinpx0 sinpy0 sinpx0 sin 2py0 …

sin 2px0 sinpy0 sin 2px0 sin 2py0…�;

K � D
ab

K cc 0 0 0 0 0

0 Ku0u0 Ku0u1 K u0v0 K u0v1 Ku0P

0 KT
u0u1 Ku1u1 K u1v0 K u1v1 Ku1P

0 KT
u0v0 KT

u1v0 K v0v0 K v0v1 K v0P

0 KT
u0v1 KT

u1v1 K T
v0v1 K v1v1 K v1P

0 KT
u0P KT

u1P K T
v0P K T

v1P KPP

26666666666664

37777777777775
;

�79�
and

M � gab

M cc M cu0 M cu1 M cv0 M cv1 M cP

MT
cu0 M u0u0 M u0u1 M u0v0 M u0v1 M u0P

MT
cu1 MT

u0u1 M u1u1 M u1v0 M u1v1 M u1P

MT
cv0 MT

u0v0 MT
u1v0 M v0v0 M v0v1 M v0P

MT
cv1 MT

u0v1 MT
u1v1 MT

v0v1 M v1v1 M v1P

MT
cP MT

u0P MT
u1P MT

v0P MT
v1P MPP

26666666666664

37777777777775
:

�80�
The submatrices are given by

K cc �

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 2�1 2 n�

26666664

37777775;

Ku0mu0m0 � � 1
6 p

4m4r2 1 �1 2 n�m2p2�dmm0 ;

Ku0mu1m0 � � 1
12p

4m4r2 2 �1 2 n�m2p2�dmm0 ;

Ku1mu1m0 � � 1
6 p

4m4r2 1 �1 2 n�m2p2�dmm0 ;

Ku0mv0n � np2mn; Ku1mv0n � np2mnen;

Ku0mv1n � np2mnem; Ku1mv1n � np2mnem1n;

Kv0nv0n0 � � 1
6 p

4 n4

r2 1 �1 2 n�n2p2�dnn0 ;

Kv0nv1n0 � � 1
12p

4 n4

r2 2 �1 2 n�n2p2�dnn0 ;

Kv1nv1n0 � � 1
6 p

4 n4

r2 1 �1 2 n�n2p2�dnn0 ;

Ku0m0Pmn� m2p3

2
m2r2

n
1 nn

 !
;

Ku1m0Pmn� m2p3

2
m2r2

n
1 nn

 !
en;

Kv0n0Pmn� n2p3

2
n2

r2m
1 nm

 !
;

Kv1n0Pmn� n2p3

2
n2

r2m
1 nm

 !
em;

KPm0n0Pmn� p

4
rm2 1

n2

r

 !2

dmm0dnn0 ;

M cc �

1 1
2

1
2

1
4

1
2

1
3

1
4

1
6

1
2

1
4

1
3

1
6

1
4

1
6

1
6

1
9

26666664

37777775;

Mc0u0m � 1 1 em

2mp
� Mc0u1m;

Mc0v0n � 1 1 en

2np
� Mc0v1m;

Mc1u0m � em

2mp
� Mc1u1m;

Mc1v0n � 1 1 en

6np
;

Mc1v1n � 1 1 en

3np
;
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Mc2u0n � 1 1 em

6mp
;

Mc2u1n � 1 1 em

3np
;

Mc2v0n � en

2np
� Mc2v1n;

Mc3u0m � em

6mp
;

Mc3u1m � em

3mp
;

Mc3v0n � en

6np
;

Mc3v1n � en

3np
;

Mc0Pmn� �1 1 em��1 1 en�
mnp2 ;

Mc1Pmn� em�1 1 en�
mnp2 ;

Mc2Pmn� �1 1 em�en

mnp2 ;

Mc3Pmn� emen

mnp2 ;

Mu0mu0m0 � 1
6 dmm0 � Mu1mu1m0 ;

Mu0mu1m0 � 1
12dmm0 ;

Mu0mv0n � 1
mnp2 ; Mu0mv1n � em

mnp2 ;

Mu1mv0n � en

mnp2 ; Mu1mv1n � em1n

mnp2 ;

Mv0nv0n0 � 1
6 dnn0 � Mv1nv1n0 ;

Mv0nv1n0 � 1
12dnn0 ;

Mu0m0Pmn� 1
2np

dmm0 ; Mu1m0Pmn� en

2np
dmm0 ;

Mv0n0Pmn� 1
2mp

dnn0 ; Mv1n0Pmn� em

2mp
dnn0 ;

MPmnPm0n0 � 1
4 dmm0dnn0 ;

wheredmm0 is the Kronecker delta, and

em � 2�21�m:
Based on these definitions forK , M and F, we may then
solve Eq. (58) forQ, truncating at finite values ofm andn
corresponding to the sinusoidal terms in thex andy direc-
tions. Hence, we obtain the plate Green function as

g�x; y; x0; y0� � FT�x; y��K 2 m4M �21F�x0; y0�: �81�
We may also solve the generalised eigenvalue problem

�K 2 m4M �Q � 0 �82�
to obtain the natural frequencies and mode shapes for the
plate.

8. Numerical results for the plate

We consider first the natural frequencies and mode shapes
of the free–free plate, based on the above formulation. We
take n � 0.333 for all of the results shown here. Table 1
shows predictions of the first ten non-zero natural frequen-
cies for a square plate, using 2, 4, 8, 16 and 32 harmonics in
the Fourier series in each direction. Thus with eight terms,
for example, there are 100 unknowns in the vectorQ. The
frequencies are expressed in non-dimensional form ass i �
vib

2 �����
g=D
p

; where i � 1; 2, 3 correspond to the first three
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Table 1
Non-dimensional natural frequencies,s i, versus number of Fourier harmonics in each direction,N, for a square free–free plate

N s4 s5 s6 s7 s8 s9 s10 s11 s12 s13

2 13.20 19.38 25.51 35.17 35.17 63.36 63.36 68.68 69.15 81.97
4 13.18 19.33 24.63 34.42 34.42 61.43 61.43 63.10 68.58 77.85
8 13.18 19.29 24.50 34.34 34.34 61.15 61.15 62.92 68.48 77.30
16 13.17 19.26 24.46 34.29 34.29 61.04 61.04 62.85 68.35 77.13
32 13.17 19.24 24.44 34.26 34.26 60.99 60.99 62.81 68.25 77.05

Table 2
Non-dimensional natural frequencies,s i, versus number of Fourier harmonics in each direction,N, for a free–free plate�b=a� 5�

N s4 s5 s6 s7 s8 s9 s10 s11 s12 s13

2 21.68 60.58 63.63 145.45 227.0 566.9 583.2 643.5 735.9 1576.2
4 21.30 59.12 63.46 119.3 131.0 198.6 205.2 315.8 415.3 559.8
8 21.22 58.85 63.43 116.1 130.3 193.0 203.8 287.0 290.4 381.8
16 21.19 58.75 63.43 115.9 130.2 192.6 203.6 286.2 288.8 380.6
32 21.17 58.70 63.42 115.8 130.2 192.4 203.5 286.1 288.5 380.3
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rigid body modes. Table 2 shows equivalent results for a
rectangular plate withb=a� 5: In both cases, the conver-
gence is seen to be satisfactory. The results for the square
plate computed with 32 harmonics in each direction are
within about 0.1% of those tabulated by Gorman and Wei
Din [15], based on a superposition approach for the thin
plate problem. The first 16 modes in each case are shown
in Figs. 9 and 10, respectively, including the rigid body
modes. These results are based on using eight terms in
each direction, though the results based on 32 terms are
almost indistinguishable. Also shown in these figures are
all the components of the vectorQ for each mode plotted
(which has 100 elements for the representation with 8
harmonics in each direction: 4 forci, 32 for the terms inu
and v, and 64 for thePmn). It should be noted that the
isometrics and contour plots in Fig. 10 are shown on a
square, because the spatial dimensions have been non-
dimensionalised by the sides of the plate. The beam-
type behaviour forb=a� 5 is, however, clearly apparent
in modes 4, 5, 7, 9, 12 and 14. On the other hand, when scaled
to the square, modes 6 and 8 of the rectangular plate clearly
correspond to modes 4 and 7 for the square plate. This may
also be observed in the components ofQ. Furthermore,
it is seen that for the first 16 modes, in either case, the terms
Pmn do not contribute greatly (though their effect is not
negligible).

A sample of Green functions for the free–free square
plate is shown in Fig. 11, for a non-dimensional frequency
s � 20.00. The nine plots show the values of the Green
function G�x0; y0� � g�x; y; x0; y0� corresponding to nine
positions �x0; y0� of a point load in one quadrant of the

plate. It may be seen that, as expected, mode 5 is excited
�s5 � 19:24 from Table 1), except when the load is on
the diagonal of the square which is a nodal line for this
mode.

9. Discussion

This analysis has led first to a form of Green function for
the free–free beam which is based on a sum of modes for a
simply supported beam plus the two rigid body modes. The
two approaches adopted (selection of a series to satisfy the
conditions of the boundary values problem directly, and use
of an energy formulation which satisfies the natural bound-
ary conditions implicitly) have both been shown to be very
satisfactory. Numerical results suggest that the series
converge rapidly. For example, at frequencies in the region
of thenth resonant frequency of the simply supported beam,
about 2n terms are required in the series to obtain the Green
function for the free–free beam. The series form may be
used without difficulty at very high frequencies, without the
special treatment required in the case of the closed form
expression corresponding to the free–free beam.

The second approach has then been used for the thin
plate. Natural frequencies and mode shapes for square and
rectangular free–free plates have been evaluated, and it has
been found that with 8 sinusoidal terms in each direction the
first 13 modal frequencies are within 0.5% of the converged
results. Green functions for the plate have also been
obtained, which also appear to have satisfactory conver-
gence characteristics.
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Fig. 11. Green functions for free–free plate (square) ats � 20:00:
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