Energy conservation

海大河海系

陳正宗

Function decomposition: discrete form:

any time function, f(t), with a period 2p, we have

$$f(t) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} \left\{ a_n cos\left(\frac{n\pi t}{p}\right) + b_n sin\left(\frac{n\pi t}{p}\right) \right\}$$

Energy conservation:

$$\int_0^{2p} f^2(t)dt = \frac{1}{2}a_0^2p + p\sum_{n=1}^{\infty} (a_n^2 + b_n^2)$$

Parseval's equality:

An alternative method to calculate $\int_0^{2p} f^2(t)dt$ is available since a_n and b_n decay quickly.

■ 海大河工系陳正宗 工數(二) ------

【存檔:c:/ctex/course/math2/conv1.te】【建檔:Mar./3/'97】