Fourier Series: Examples

John Appleby

Contents

1 Important Facts 1

2 Exercises and Examples

1 Important Facts

1. Suppose $f(x)$ is a periodic function of period 2π which can be represented by a TRIGONOMETRIC FOURIER SERIES

$$
f(x)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos n x+b_{n} \sin n x
$$

(This means that the series above converges to $f(x)$.)
Then the Fourier Coefficients satisfy the Euler Formulae, namely:

$$
\begin{aligned}
& a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x \\
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x \quad \text { for } n=1,2, \ldots \\
& b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x \quad \text { for } n=1,2, \ldots
\end{aligned}
$$

2. A function f is said to be even if

$$
f(-x)=f(x) \quad \text { for all } x \in \mathbb{R}
$$

and odd if

$$
f(-x)=-f(x) \quad \text { for all } x \in \mathbb{R}
$$

Recall the product of two even functions is even, the product of two odd functions is even and the product of an even and an odd function is odd. Compare
the multiplication of even and odd functions to the addition of even and odd integers.
3. If f is an odd function then

$$
\int_{-\pi}^{\pi} f(x) d x=0
$$

while if f is an even function, then

$$
\int_{-\pi}^{\pi} f(x) d x=2 \int_{0}^{\pi} f(x) d x
$$

2 Exercises and Examples

Example 1. Let f be a periodic function of period 2π such that

$$
f(x)=\pi^{2}-x^{2} \quad \text { for } x \in(-\pi, \pi) .
$$

Supposing that f has a convergent trigonometric Fourier series, show that

$$
\begin{equation*}
\pi^{2}-x^{2}=\frac{2 \pi^{2}}{3}+\sum_{n=1}^{\infty} \frac{-4}{n^{2}}(-1)^{n} \cos n x \tag{2.1}
\end{equation*}
$$

SOLUTION: The solution can be effected in a number of separate steps:

- Check whether f is even or odd
- If f is odd, all the Fourier coefficients $\mathbf{a}_{\mathbf{n}}$ for $n=0,1,2 \ldots$ are zero; if f is even, all the Fourier coefficients $\mathbf{b}_{\mathbf{n}}$ for $n=1,2 \ldots$ are zero.
- Compute the remaining Fourier coefficients using the Euler Formulae. It is generally a good strategy to use Integration by Parts, successively integrating $\sin n x$ and $\cos n x$ and differentiating $f(x)$.
- Replace the expressions for the Fourier coefficients a_{n}, b_{n} in

$$
f(x)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos n x+b_{n} \sin n x .
$$

STEP 1: $f(-x)=\pi^{2}-(-x)^{2}=\pi^{2}-x^{2}=f(x)$ so f is even.
STEP 2: Since $f(x)$ is even and $\sin n x$ is odd, $f(x) \sin n x$ is odd and hence

$$
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x=0 .
$$

STEP 3: Since $f(x)$ is even and $\cos n x$ is even, $f(x) \cos n x$ is even, and so

$$
\int_{-\pi}^{\pi} f(x) \cos n x d x=2 \int_{0}^{\pi} f(x) \cos n x d x
$$

Therefore,

$$
\begin{equation*}
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x=\frac{1}{\pi} 2 \int_{0}^{\pi} f(x) \cos n x d x=\frac{2}{\pi} \int_{0}^{\pi}\left(\pi^{2}-x^{2}\right) \cos n x \tag{2.2}
\end{equation*}
$$

As suggested above, we calculate the integral in (2.2) by Integration by Parts. Recall the Integration by Parts formula:

$$
\begin{equation*}
\int_{a}^{b} f(x) g^{\prime}(x) d x=\left.f(x) g(x)\right|_{x=a} ^{b}-\int_{a}^{b} f^{\prime}(x) g(x) d x \tag{2.3}
\end{equation*}
$$

Let

$$
f(x)=\pi^{2}-x^{2} \quad \text { and } \quad g^{\prime}(x)=\cos n x
$$

so

$$
f^{\prime}(x)=-2 x \quad \text { and } \quad g(x)=\int \cos n x d x=\frac{1}{n} \sin n x .
$$

Using (2.3) and the above, we have

$$
\begin{align*}
\int_{0}^{\pi} & \underbrace{\left(\pi^{2}-x^{2}\right)}_{f} \underbrace{\cos n x}_{g^{\prime}} d x \tag{2.4}\\
& =\left.\underbrace{\left(\pi^{2}-x^{2}\right)}_{f} \underbrace{\frac{1}{n} \sin n x}_{g}\right|_{0} ^{\pi}-\int_{0}^{\pi} \underbrace{-2 x}_{f^{\prime}} \underbrace{\frac{1}{n} \sin n x}_{g} d x \\
& =\left(\pi^{2}-\pi^{2}\right) \frac{1}{n} \sin n \pi-\left(\pi^{2}-0^{2}\right) \frac{1}{n} \sin 0+\frac{2}{n} \int_{0}^{\pi} x \sin n x d x \\
& =\frac{2}{n} \int_{0}^{\pi} x \sin n x d x . \tag{2.5}
\end{align*}
$$

Now we calculate this last integral using integration by parts: let

$$
f(x)=x \quad \text { and } \quad g^{\prime}(x)=\sin n x
$$

so

$$
f^{\prime}(x)=1 \quad \text { and } \quad g(x)=\int \sin n x d x=\frac{-\cos n x}{n} .
$$

Using (2.3), and remembering that $\cos n \pi=(-1)^{n}$, $\sin n \pi=0$ for n an integer, we have

$$
\begin{aligned}
\int_{0}^{\pi} \underbrace{x}_{f} \underbrace{\sin n x}_{g^{\prime}} d x & =\left.\underbrace{x}_{f} \underbrace{\frac{-\cos n x}{n}}_{g}\right|_{0} ^{\pi}-\int_{0}^{\pi} \underbrace{1}_{f^{\prime}} \underbrace{\frac{-\cos n x}{n}}_{g} d x \\
& =\pi \frac{-\cos n \pi}{n}-0 \frac{-\cos 0}{n}+\frac{1}{n} \int_{0}^{\pi} \cos n x d x \\
& =-\frac{1}{n} \pi(-1)^{n}+\left.\frac{1}{n} \frac{\sin n x}{n}\right|_{0} ^{\pi}=-\frac{1}{n} \pi(-1)^{n} .
\end{aligned}
$$

Using (2.2), (2.5) and the above, we have

$$
\begin{aligned}
a_{n} & =\frac{2}{\pi} \int_{0}^{\pi}\left(\pi^{2}-x^{2}\right) \cos n x d x=\frac{2}{\pi} \frac{2}{n} \int_{0}^{\pi} x \cos n x d x \\
& =\frac{2}{\pi} \frac{2}{n}-\frac{1}{n} \pi(-1)^{n}=\frac{-4}{n^{2}}(-1)^{n} .
\end{aligned}
$$

It remains to calculate a_{0}, which is given by

$$
\begin{aligned}
a_{0} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x=\frac{1}{2 \pi} 2 \int_{0}^{\pi} \pi^{2}-x^{2} d x \\
& =\left.\frac{1}{\pi}\left(\pi^{2} x-\frac{x^{3}}{3}\right)\right|_{0} ^{\pi}=\frac{1}{\pi}\left(\pi^{3}-\frac{\pi^{3}}{3}\right)=\frac{2 \pi^{3}}{3}
\end{aligned}
$$

where we use the fact that $f(x)=\pi^{2}-x^{2}$ is even.

STEP 4: Using the formulae obtained above for the Fourier coefficients, we have

$$
\pi^{2}-x^{2}=\frac{2 \pi^{3}}{3}+\sum_{n=1}^{\infty} \frac{-4}{n^{2}}(-1)^{n} \cos n x+0 \cdot \sin n x=\frac{2 \pi^{3}}{3}+\sum_{n=1}^{\infty} \frac{-4}{n^{2}}(-1)^{n} \cos n x
$$

Example 2. Show that the trigonometric Fourier series of $f(x)=3 x$ for $x \in$ $(-\pi, \pi)$ is given by

$$
\sum_{n=1}^{\infty} \frac{-6}{n}(-1)^{n} \sin n x .
$$

SOLUTION:

STEP 1: $f(-x)=3 .-x=-3 x=-f(x)$, so f is an odd function.

STEP 2: Since $f(x)$ is odd and $\cos n x$ is even, it follows that $f(x) \cos n x$ is odd, so

$$
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x=\frac{1}{\pi} .0=0 .
$$

Moreover, since f is odd

$$
a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x=\frac{1}{2 \pi} \cdot 0=0 .
$$

STEP 3: We need to calculate the Fourier coefficients using the Euler Formulae. However, noting that $f(x)$ and $\sin n x$ are odd, and therefore that $f(x) \sin n x$ is even we have

$$
\begin{equation*}
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x=\frac{1}{\pi} 2 \int_{0}^{\pi} f(x) \sin n x d x=\frac{6}{\pi} \int_{0}^{\pi} x \cos n x d x . \tag{2.6}
\end{equation*}
$$

The latter integral is calculated using integration by parts.

Exercise 2.1. Show that

$$
\int_{0}^{\pi} x \sin n x d x=\left.x \frac{-\cos n x}{n}\right|_{0} ^{\pi}-\int_{0}^{\pi} \frac{-\cos n x}{n} d x=\frac{-\pi}{n}(-1)^{n} .
$$

By virtue of Exercise 2.1, we have, from (2.6)

$$
b_{n}=\frac{6}{\pi} \frac{-\pi}{n}(-1)^{n}=-\frac{6}{n}(-1)^{n} .
$$

STEP 4: The Fourier series of $f(x)=3 x$ is given by

$$
\begin{aligned}
a_{0}+\sum_{n=1}^{\infty} a_{n} \cos n x+b_{n} \sin n x & =0+\sum_{n=1}^{\infty} 0 \cos n x+-\frac{6}{n}(-1)^{n} \sin n x \\
& =\sum_{n=1}^{\infty}-\frac{6}{n}(-1)^{n} \sin n x
\end{aligned}
$$

Now try the following
Exercise 2.2.
(i) Show that $x^{3} \cos n x$ is an odd function and $x^{3} \sin n x$ is an even function. Hence give the value of

$$
\int_{-\pi}^{\pi} x^{3} \cos n x d x
$$

and write down another expression equal to

$$
\int_{-\pi}^{\pi} x^{3} \sin n x d x
$$

(ii) By integrating by parts, show that

$$
\int_{0}^{\pi} x^{3} \sin n x d x=-\frac{(-1)^{n} \pi^{3}}{n}+\frac{3}{n} \int_{0}^{\pi} x^{2} \cos n x d x
$$

Hint: Recall for integer values of n that $\cos n \pi=(-1)^{n}$.
(iii) Given that

$$
\int_{0}^{\pi} x^{2} \cos n x d x=-\frac{2}{n} \int_{0}^{\pi} x \sin n x d x
$$

and

$$
\int_{0}^{\pi} x \sin n x d x=-\frac{\pi}{n}(-1)^{n}
$$

use part (ii) to prove that

$$
\int_{0}^{\pi} x^{3} \sin n x d x=\frac{6 \pi}{n^{3}}(-1)^{n}-\frac{\pi^{3}}{n}(-1)^{n}
$$

(iv) Using parts (i) and (iii), and supposing that the Fourier series converges, show for all $x \in(-\pi, \pi)$ that

$$
x^{3}=\sum_{n=1}^{\infty} 2(-1)^{n}\left(\frac{6}{n^{3}}-\frac{\pi^{2}}{n}\right) \sin n x .
$$

